396 resultados para Bridges Design and construction Standards Queensland


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Heavy traffic volumes frequently cause distress in asphalt pavements which were designed under accepted design methods and criteria. The distress appears in the form of rutting in the wheel tracks and rippling or shoving in areas where traffic accelerates or decelerates. Apparently accepted stability test methods alone do not always assure the desired service performance of asphaltic pavements under heavy traffic. The Bituminous Research Laboratory, Engineering Research Institute of Iowa State University undertook the development of a laboratory device by which the resistance of an asphalt paving mix to displacement under traffic might be evaluated, and also be used as a supplemental test to determine adequacy of design of the mix by stability procedures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The primary reason for using steam in the curing of concrete is to produce a high early strength. This high early strength is very desirable to the manufacturers of precast and prestressed concrete units, which often require expensive forms or stress beds. They want to remove the forms and move the units to storage yards as soon as possible. The minimum time between casting and moving the units is usually governed by the strength of the concrete. Steam curing accelerates the gain in strength at early ages, but the uncontrolled use of steam may seriously affect the growth in strength at later ages. The research described in this report was prompted by the need to establish realistic controls and specifications for the steam curing of pretensioned, prestressed concrete bridge beams and concrete culvert pipe manufactured in central plants. The complete project encompasses a series of laboratory and field investigations conducted over a period of approximately three years.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

When a material fails under a number of repeated loads, each smaller than the ultimate static strength, a fatigue failure is said to have taken place. Many studies have been made to characterize the fatigue behavior of various engineering materials. The results of some of these studies have proved invaluable in the evaluation and prediction of the fatigue strength of structural materials. Considerable time and effort has gone into the evaluation of the fatigue behavior of metals. These early studies were motivated by practical considerations: The first fatigue tests were performed on materials that had been observed to fail after repeated loading of a magnitude less than that required for failure under the application of a single load. Mine-hoist chains, railway axles, and steam engine parts were among the first structural components to be recognized as exhibiting fatigue behavior. Since concrete is usually subjected to static loading rather than cyclic loading, need for knowledge of the fatigue behavior of concrete has lagged behind that of metals. One notable exception to this, however, is in the area of highway and airfield pavement design. Due to the fact that the fatigue behavior of concrete must be understood in the design of pavements and reinforced concrete bridges, highway engineers have provided the motivation for concrete fatigue studies since the 1920's.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

When a material fails under a number of repeated loads, each smaller than the ultimate static strength, a fatigue failure is said to have taken place. Many studies have been made to characterize the fatigue behavior of various engineering materials. The results of some of these studies have proved invaluable in the evaluation and prediction of the fatigue strength of structural materials. Considerable time and effort have gone into the evaluation of the fatigue behavior of metals. These early studies were motivated by practical considerations: the first fatigue tests were performed on materials that had been observed to fail after repeated loading of a magnitude less than that required for failure under the application of a single load. Mine-hoist chains (1829), railway axles (1852), and steam engine parts were among the first structural components to be recognized as exhibiting fatigue behavior. Since concrete is usually subjected to static loading rather than cyclic loading, need for knowledge of the fatigue behavior of concrete has lagged behind that of metals. One notable exception to this, however, is in the area of highway and airfield pavement design. Due to the fact that the fatigue behavior of concrete must be understood in the design of pavements and reinforced concrete bridges, highway engineers have provided the motivation for concrete fatigue studies since the 1920s.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Quality granular materials suitable for building all-weather roads are not uniformly distributed throughout the state of Iowa. For this reason the Iowa Highway Research Board has sponsored a number of research programs for the purpose of developing new and effective methods for making use of whatever materials are locally available. This need is ever more pressing today due to the decreasing availability of road funds and quality materials, and the increasing costs of energy and all types of binder materials. In the 1950s, Professor L. H. Csanyi of Iowa State University had demonstrated both in the laboratory and in the field, in Iowa and in a number of foreign countries, the effectiveness of preparing low cost mixes by stabilizing ungraded local aggregates such as gravel, sand and loess with asphalt cements using the foamed asphalt process. In this process controlled foam was produced by introducing saturated steam at about 40 psi into heated asphalt cement at about 25 psi through a specially designed and properly adjusted nozzle. The reduced viscosity and the increased volume and surface energy in the foamed asphalt allowed intimate coating and mixing of cold, wet aggregates or soils. Through the use of asphalt cements in a foamed state, materials normally considered unsuitable could be used in the preparation of mixes for stabilized bases and surfaces for low traffic road construction. By attaching the desired number of foam nozzles, the foamed asphalt can be used in conjunction with any type of mixing plant, either stationary or mobile, batch or continuous, central plant or in-place soil stabilization.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Reinforced Earth is a French development that has been used in the United States for approximately ten years. Virbro-Replacement, more commonly referred to as stone columns, is an outgrowth of deep densification of cohesionless soils originally developed in Germany. Reinforced Earth has applicability when wall height is greater than about twelve feet and deep seated foundation failure is not a concern. Stone columns are applicable when soft, cohesive subsoil conditions are encountered and bearing capacity and shearing resistance must be increased. The conditions in Sioux City on Wesley Way can be summarized as: (1) restricted right of way, (2) fill height in excess of 25 feet creating unstable conditions, (3) adjacent structures that could not be removed. After analyzing alternatives, it was decided that Reinforced Earth walls constructed on top of stone columns were the most practical approach.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The purpose of this study is to provide recommendations relative to the location and construction needs for highway maintenance facilities within the state of Iowa. These recommendations were to be developed with consideration being given to the public's expectations and priorities for highway maintenance services. As a part of the study effort, a review was made of the methods used by other states to deliver highway maintenance services. To accomplish the study, Wilbur Smith Associates undertook a series of tasks. These efforts included gathering of data and information to characterize the various maintenance programs and the delivery of maintenance and operations services by the Department. We researched the delivery of highway maintenance services in other states. Interviews with Iowa DOT maintenance personnel were accomplished. A schedule of public hearings was developed and ten hearings were held. All the information was integrated and various analyses were made. From these analyses we drew conclusions and developed recommendations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This publication is a guide to understanding the Iowa Department of Transportation’s roadside management programs. It offers descriptions of various landscape designs or planting styles used within or adjacent to Iowa’s highway rights-of-way, as well as various plant profiles. In addition, this guide will help you learn more about the value of plants and their contribution to our environment and society. This publication is written for persons having little or no formal training in botany, and technical terminology has been kept to the minimum necessary to maintain standards of accuracy and conciseness in the descriptions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The planning, construction and maintenance of its highways is the state's second highest business, next only to education. Of the nearly 113,090 miles of roads and streets in Iowa, the 10,271 miles in the Interstate and primary system are the direct responsibility of the Highway Commission.From its central headquarters in Ames, the Commission coordinates its statewide activities through facilities located in each of the 99 counties. These include six district offices, 47 resident offices and 165 maintenance garages.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Often, road construction causes the need to create a work zone. In these scenarios, portable concrete barriers (PCBs) are typically installed to shield workers and equipment from errant vehicles as well as prevent motorists from striking other roadside hazards. For an existing W-beam guardrail system installed adjacent to the roadway and near the work zone, guardrail sections are removed in order to place the portable concrete barrier system. The focus of this research study was to develop a proper stiffness transition between W-beam guardrail and portable concrete barrier systems. This research effort was accomplished through development and refinement of design concepts using computer simulation with LS-DYNA. Several design concepts were simulated, and design metrics were used to evaluate and refine each concept. These concepts were then analyzed and ranked based on feasibility, likelihood of success, and ease of installation. The rankings were presented to the Technical Advisory Committee (TAC) for selection of a preferred design alternative. Next, a Critical Impact Point (CIP) study was conducted, while additional analyses were performed to determine the critical attachment location and a reduced installation length for the portable concrete barriers. Finally, an additional simulation effort was conducted in order to evaluate the safety performance of the transition system under reverse-direction impact scenarios as well as to select the CIP. Recommendations were also provided for conducting a Phase II study and evaluating the nested Midwest Guardrail System (MGS) configuration using three Test Level 3 (TL-3) full-scale crash tests according to the criteria provided in the Manual for Assessing Safety Hardware, as published by the American Association of Safety Highway and Transportation Officials (AASHTO).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The deterioration of bridge decks due to steel corrosion is a problem encountered several years ago. This project, using galvanized reinforcement, began over twenty years ago. Since that time, epoxy coated reinforcement has become the specified material used in bridge decks. The decks researched in this project are located on 1-35 in Story County. They were constructed in 1967. The results from the testing done on this project show that galvanizing protects steel from corrosion due to deicing salts, resulting in less/no concrete deterioration.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The purpose of this Interstate Corridor Plan (plan) is to provide the Iowa Department of Transportation (Iowa DOT) with an initial screening and prioritization of interstate corridors/segments. This process evaluates the entire interstate system, independent of current financial constraints, using a select group of criteria weighted in terms of their relative significance. The resulting segments would then represent those areas that should be considered for further study (e.g., environmental, design, engineering), with the possibility of being considered for programming by the Iowa Transportation Commission. There was a dominant theme present in conversations with those department stakeholders who have a keen interest in the product of this planning effort. A statement that was often heard was that staff needed more information to help answer the question, “Where do we need to be looking to next, and when?” There was a strong desire to be able to use this plan to help populate that initial pool of candidate segments that would progress towards further study, as discussed below. It was this theme that framed the need for this plan and ultimately guided its development. Further study: As acknowledged at the beginning of this section, the product of this planning effort will be an initial screening and prioritization of interstate corridors/segments. While this initial screening will assist the Iowa DOT in identifying those areas that should be considered for further study, the plan will not identify specific projects or alternatives that could be directly considered as part of the programming process. Bridging the gap between this plan and the programming process are a variety of environmental, design, and engineering activities conducted by various Iowa DOT offices. It is these activities that will further refine the priority corridors/segments identified in this plan into candidate projects. In addition, should the evaluation process developed through this planning effort prove to be successful, it is possible that there will be additional applications, such as future primary system highway plans and statewide freight plans.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

“This book traces the development of transportation in Iowa from territorial days to the 19 80s. It shows the evolution of the transportation systems; how they originated, progressed and functioned; their structural organizations; effectiveness in overcoming obstacles, under the guidance of state and federal legislation; and their impact upon the development of the state.” – From the Prologue, page xiii

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The booklet tells the history of the construction of the Iowa Highway 376 Bridge within the context of significant modernization and expansion of the highway system in Iowa in the 1950s. Curvy, narrow highways were widened and straightened and narrow iron truss bridges were replaced with more modern concrete and steel structures, changing the landscape of rural Iowa. Bridge engineer Herbert A Arthur, who designed the Iowa Highway 376 Bridge, was a prolific bridge engineer in the 1950s. This booklet serves to inform the public of this significant aspect of Iowa transportation history.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This document includes the general provisions and regulations of the Iowa Sate Traveling Library under the Library Services and Construction Act. It also includes information of appropriations of funds available for expenditure, authority of local agencies to administer and state agency to supervise local administration and certification.