310 resultados para Lightweight and heavyweight concrete


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The penetration of chloride ions from deicing salts into the portland cement concrete of bridge decks can cause corrosion and serious damage to the reinforcing steel. Concrete properties which prevent chloride penetration into the bridge deck and provide a good structural and economic wearing surface are desirable. A variety of mix designs have been tried in the past in search of improved performance and lower costs for bridge deck overlay concrete. A group of mixes with various designs have been tested in this project and results are being compared to determine which concrete mix appears to be the most cost effective and resistant to chloride penetration for bridge deck overlay use.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Crack formation has been a problem on some recently constructed bridges in Iowa. Drying shrinkage has been considered a contributing factor in that cracking. The study was undertaken to evaluate some of those material properties that contribute to the magnitude of drying shrinkage. Cement content, cement composition, fly ash and retarding admixture were the factors studied. Concrete prisms were cast for seven mixes and, after curing, were exposed to 100 deg F heat at ambient humidity for 280 days. The following were observed from the testing: (1) Higher C3A content cement concrete produced larger shrinkage; (2) Use of fly ash increased shrinkage; (3) Use of retarder increased shrinkage; and (4) Lowering the cement content reduced the shrinkage.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Iowa Department of Transportation has noticed an increase in the occurrence of excessively vibrated portland cement concrete (PCC) pavements. The overconsolidation of PCC pavements can be observed in several sections of PCC highways across the state of Iowa. Also, excessive vibration is believed to be a factor in the premature deterioration of several pavements in Iowa. To address the problem of excessive vibration, a research project was conducted to document the vibratory practices of PCC slipform paving in Iowa and determine the effect of vibration on the air content of pavement. The primary factors studied were paver speed, vibrator frequency, and air content relative to the location of the vibrator. The study concluded that the Iowa Department of Transportation specification of 5000 and 8000 vibrations per minute (vpm) for slipform pavers is effective for normal paver speeds observed on the three test paving projects. Excessive vibration was clearly identified on one project where a vibrator frequency was found to be 12,000 vpm. When the paver speed was reduced to half the normal speed, hard air contents indicated that excessive vibration was beginning to occur in the localized area immediately surrounding the vibrator at a frequency of 8000 vpm. Analysis of variance testing indicated many variables and interactions to be significant at a 95% confidence level; however, the variables and interactions that were found to be significant varied from project to project. This affirms the complexity of the process for consolidating PCC.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Iowa Department of Transportation has discovered an increase in the occurrence of excessively vibrated portland cement concrete (PCC) pavements. The overconsolidation of PCC pavements has been observed in several projects across the state. Overconsolidation is also believed to be a factor in acceleration of premature deterioration of at least two pavement projects in Iowa. To address the problem, a research project in 1995 documented the vibratory practices of PCC slipform paving in Iowa in order to determine the effect of vibration on consolidation and air content of pavement. Paver speed, vibrator frequency, and air content relative to the location of the vibrator were studied. The study concluded that the Iowa Department of Transportation specification of 5,000 to 8,000 vibrations per minute (vpm) for slipform pavers is effective for normal paver speeds on the three projects that were examined. Excessive vibration was clearly identified on one project where a vibrator frequency of 12,000 vpm was discovered. When the paver speed was reduced to half the normal speed, hard air contents indicate that excessive vibration was beginning to occur in the localized area immediately surrounding the vibrator at a frequency of 8,000 vpm. The study also indicates that the radius of influence of the vibrators is smaller than has been claimed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Due to an equipment malfunction, too much sand was used in the concrete on the bridge floor placed on August 9, 1994, in Washington County, Project No. BRF-22-2(36)38-92. Freeze-thaw durability testing of cores taken from the concrete in question and the other two concretes not in question was performed. The experimental results indicate that the concrete in question is considered at least as durable and resistant to freeze-thaw damage as the concretes which are not in question. The concrete in question can be expected to function properly for the regular service life of the bridge.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Micro-electromechanical systems (MEMS) provide vast improvements over existing sensing methods in the context of structural health monitoring (SHM) of highway infrastructure systems, including improved system reliability, improved longevity and enhanced system performance, improved safety against natural hazards and vibrations, and a reduction in life cycle cost in both operating and maintaining the infrastructure. Advancements in MEMS technology and wireless sensor networks provide opportunities for long-term continuous, real-time structural health monitoring of pavements and bridges at low cost within the context of sustainable infrastructure systems. The primary objective of this research was to investigate the use of MEMS in highway structures for health monitoring purposes. This study focused on investigating the use of MEMS and their potential applications in concrete through a comprehensive literature review, a vendor survey, and a laboratory study, as well as a small-scale field study. Based on the comprehensive literature review and vendor survey, the latest information available on off-the-shelf MEMS devices, as well as research prototypes, for bridge, pavement, and traffic applications were synthesized. A commercially-available wireless concrete monitoring system based on radio-frequency identification (RFID) technology and off-the-shelf temperature and humidity sensors were tested under controlled laboratory and field conditions. The test results validated the ability of the RFID wireless concrete monitoring system in accurately measuring the temperature both inside the laboratory and in the field under severe weather conditions. In consultation with the project technical advisory committee (TAC), the most relevant MEMS-based transportation infrastructure research applications to explore in the future were also highlighted and summarized.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The large volume of traffic on the interstate system makes it difficult to make pavement repairs. The maintenance crew needs 4-5 hours to break out the concrete to be replaced and prepare the hole for placing new concrete. Because of this it is usually noon before the patch can be placed. Since it is desirable to remove the barricades before dark there are only 7-8 hours for the concrete to reach the required strength. There exists a need for a concrete that can reach the necessary strength (modulus of rupture = 500 psi) in 7-8 hours. The purpose of this study is to determine if type III cement and/or an accelerator can be used in an M-4 mix to yield a fast setting patch with very little shrinkage. It is recognized that calcium chloride is a corrosive material and may therefore have detrimental effects upon the reinforcing steel. The study of these effects, however, is beyond the scope of this investigation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In recent years, ultra-thin whitetopping (UTW) has evolved as a viable rehabilitation technique for deteriorated asphalt cement concrete (ACC) pavement. Numerous UTW projects have been constructed and tested, enabling researchers to identify key elements contributing to their successful performance. These elements include foundation support, interface bonding condition, portland cement concrete (PCC) overlay thickness, synthetic fiber reinforcement usage, joint spacing, and joint sealing. The interface bonding condition is the most important of these elements. It enables the pavement to act as a composite structure, thus reducing tensile stresses and allowing an ultra-thin PCC overlay to perform as intended. The Iowa Department of Transportation (Iowa DOT) UTW project (HR-559) initiated UTW in Iowa. The project is located on Iowa Highway 21 between Iowa Highway 212 and U.S. Highway 6 in Iowa County, near Belle Plaine, Iowa. The objective of this research was to investigate the interface bonding condition between an ultra-thin PCC overlay and an ACC base over time, considering the previously mentioned variables. This research lasted for five years, at which time it was extended an additional five years. The new phase of the project was initiated by removing cracked panels existing in the 2-inch thick PCC sections and replacing them with three inches of PCC. The project extension (TR 432) will provide an increased understanding of slab bonding conditions over a longer period, as well as knowledge regarding the behavior of the newly rehabilitated areas. In order to accomplish the goals of the project extension, Falling Weight Deflectometer (FWD) testing will continue to be conducted. Laboratory testing, field strain gage implementation, and coring will no longer be conducted. This report documents the planning and construction of the rehabilitation of HR 559 and the beginning of TR 432 during August of 1999.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The primary objectives of this research project were: 1. Determine and recommend solutions for problems relating to shipping, storing and batching of fly ash. 2. Establish a procedure for batching, mixing and placing uniform concrete with specified air content and consistency. 3. Demonstrate that concrete of comparable quality can be produced.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The corrosion of reinforcing steel within concrete has always been a problem in construction of bridge decks. With low slump concrete and epoxy rebar, progress has been made in controlling the corrosion. There is concern, however, that the chloride also attacks the substructures, specifically the pier columns. They are subject to chloride attack by chemical deicers in the drainage from the bridge deck. Piers supporting grade separation bridges are also subject to chlorides contained in the direct splash from the lower level traffic. In this project, a field evaluation was conducted to evaluate the effectiveness of commercially available products in preventing chloride intrusion.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The problem of determining the suitability of carbonate rocks as concrete aggregates is extremely complex and calls for more new data than has been available or obtainable from usual methods. Since 1955 the approach which has served as a primary basis for the project has been to gather as much new information as possible to apply to the problem. New information obtained by new and different techniques provides better understanding. This approach was decided on since, in all prior studies, a standard petrographic and petrologic approach correlated in many instances with standard engineering tests did not provide the answer in Iowa or elsewhere. One can theorize that concrete fails (excluding external causes such as traffic, foundation failure, etc.) because of stresses of internal origin. The stresses can be of a physical nature, such as frost action, or result from chemical activity such as the alkali aggregate reaction. If, as service records show, the aggregate is considered the cause of distress in concrete, it will without doubt be the manner in which an aggregate can create or contribute to stress of internal origin by physical or chemical means. Therefore the main emphasis was placed on studying physical and chemical properties of aggregates as well as the behavior of carbonate rocks in concrete environments. Although standard geologic and engineering methods were also utilized, the approach adopted required considerable effort in devising new techniques and methods. This report is intended to be a detailed summary of the research performed. Whenever possible, the work accomplished will be summarized and all pertinent data will be included. For further details, reference to the various theses and publications transmitted with this report or at previous times will be made wherever possible.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

When mixing asphalt in thin film and at high temperatures, as in the production of asphalt concrete, it has been shown that asphalt will harden due essentially to two factors: (1) losses of volatiles and (2) oxidation. The degree of hardening as expressed by percent loss in penetration varied from as low as 7% to about 57% depending on mixing temperatures, aggregate types, gradation, asphalt content, penetration and other characteristics of asphalts used. Methods used to predict hardening during mixing include loss on heat and thin film oven tests, with the latter showing better correlation with the field findings. However, information on other physical and chemical changes that may occur as a result of mixing in the production of hot-mix asphaltic concrete is limited, The purpose of this research project was to ascertain the changes of asphalt cement properties, both physical and chemical, during mixing operation and to determine whether one or more of the several tests of asphalt cements were critical enough to indicate these changes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Approximately 40,000 tons of slightly damaged asphalt concrete has been removed from Interstate 80 in Cass and stockpiled. Laboratory tests had indicated that this material had considerable value when upgraded with new aggregate and asphalt cement. This report documents the procedures used and results obtained on an experimental recycling project. It was demonstrated that present drum mixing-recycling equipment and procedures can be used to utilize this material with satisfactory results. Laboratory analyses of material components and mixtures were performed; these analyses indicate mixture can be produced that is uniform, stable, and very closely resembles mixture produced with all new material. Follow~up evaluations will be made to determine the effects of traffic and environment. Preliminary data indicate that plans should be made to incorporate the stockpiled material in projects near the stockpile site.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In some asphaltic concrete mixes asphalt absorption in field mixes is difficult to predict by the routine mix design tests presently being used. Latent or slow absorption in hot mixes is hard to compensate for in field control due to aggregate gradations being near maximum density. If critical asphalt need could be changed by increasing voids in the mineral aggregate so that more freedom could be exercised in compensating for the absorption, this may aid in design. The voids in the mineral aggregate can be related to composite gradation of total aggregate in a mixture, i.e. if a composite gradation of aggregate is finer than that of maximum density curve, the V.M.A. will be greater than that of a mix of maximum density. The typical gradation of Iowa Type 'A' mixes is finer than a gradation which is near the centerline of the specification at sieves larger than the No. 30 and coarser at the lower sieve sizes. The mixes of the typical gradation will have higher V.M.A. than those of the near centerline mixes. By studying properties of the mixes of the typical gradation and comparing them with those of the mixes of maximum density, it may aid in the modification and simplification of our present testing methods and specification requirements while still maintaining control of quality of the mix by controlling voids, stability, gradation and asphalt content.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A Research Project involving two, three, four and five inches of bonded Portland Cement Concrete Overlay on a 1.3 mile Portland Cement Concrete pavement was conducted in Clayton County, Iowa, during September, 1977, centering on the following objectives: 1. Determine the mixing and proportioning procedures required in using a conventional, central mix proportioning plant to produce a dense Portland Cement Concrete mixture using standard mixes with super-water reducing admixtures; 2. Determine the economics, longevity and maintenance performance of a bonded, thin-lift, non-reinforced Portland Cement Concrete resurfacing course using conventional procedures, equipment and concrete paving mixtures both with and without super-water reducing admixtures; 3. Determine if an adequate bond between the existing pavement and an overlay of thin-lift, dense, non-reinforced Portland Cement Concrete can be obtained with only special surface cleaning and no surface removal or grinding.