21 resultados para sampling without replacement
Resumo:
The Quality Management Earthwork (QM-E) special provision was implemented on a pilot project to evaluate quality control (QC) and quality assurance (QA) testing in predominately unsuitable soils. Control limits implemented on this pilot project included the following: 95% relative compaction, moisture content not exceeding +/- 2% of optimum moisture content, soil strength not exceeding a dynamic cone penetrometer (DCP) index of 70 mm/blow, vertical uniformity not exceeding a variation in DCP index of 40 mm/blow, and lift thickness not exceeding depth determined through construction of control strips. Four-point moving averages were used to allow for some variability in the measured parameter values. Management of the QC/QA data proved to be one of the most challenging aspects of the pilot project. Implementing use of the G-RAD data collection system has considerable potential to reduce the time required to develop and maintain QC/QA records for projects using the QM-E special provision. In many cases, results of a single Proctor test were used to establish control limits that were used for several months without retesting. While the data collected for the pilot project indicated that the DCP index control limits could be set more tightly, there is not enough evidence to support making a change. In situ borings, sampling, and testing in natural unsuitable cut material and compacted fill material revealed that the compacted fill had similar strength characteristics to that of the natural cut material after less than three months from the start of construction.
Resumo:
Recent data compiled by the National Bridge Inventory revealed 29% of Iowa's approximate 24,600 bridges were either structurally deficient or functionally obsolete. This large number of deficient bridges and the high cost of needed repairs create unique problems for Iowa and many other states. The research objective of this project was to determine the load capacity of a particular type of deteriorating bridge – the precast concrete deck bridge – which is commonly found on Iowa's secondary roads. The number of these precast concrete structures requiring load postings and/or replacement can be significantly reduced if the deteriorated structures are found to have adequate load capacity or can be reliably evaluated. Approximately 600 precast concrete deck bridges (PCDBs) exist in Iowa. A typical PCDB span is 19 to 36 ft long and consists of eight to ten simply supported precast panels. Bolts and either a pipe shear key or a grouted shear key are used to join adjacent panels. The panels resemble a steel channel in cross-section; the web is orientated horizontally and forms the roadway deck and the legs act as shallow beams. The primary longitudinal reinforcing steel bundled in each of the legs frequently corrodes and causes longitudinal cracks in the concrete and spalling. The research team performed service load tests on four deteriorated PCDBs; two with shear keys in place and two without. Conventional strain gages were used to measure strains in both the steel and concrete, and transducers were used to measure vertical deflections. Based on the field results, it was determined that these bridges have sufficient lateral load distribution and adequate strength when shear keys are properly installed between adjacent panels. The measured lateral load distribution factors are larger than AASHTO values when shear keys were not installed. Since some of the reinforcement had hooks, deterioration of the reinforcement has a minimal affect on the service level performance of the bridges when there is minimal loss of cross-sectional area. Laboratory tests were performed on the PCDB panels obtained from three bridge replacement projects. Twelve deteriorated panels were loaded to failure in a four point bending arrangement. Although the panels had significant deflections prior to failure, the experimental capacity of eleven panels exceeded the theoretical capacity. Experimental capacity of the twelfth panel, an extremely distressed panel, was only slightly below the theoretical capacity. Service tests and an ultimate strength test were performed on a laboratory bridge model consisting of four joined panels to determine the effect of various shear connection configurations. These data were used to validate a PCDB finite element model that can provide more accurate live load distribution factors for use in rating calculations. Finally, a strengthening system was developed and tested for use in situations where one or more panels of an existing PCDB need strengthening.
Resumo:
The Iowa Department of Natural Resources uses benthic macroinvertebrate and fish sampling data to assess stream biological condition and the support status of designated aquatic life uses (Wilton 2004; IDNR 2013). Stream physical habitat data assist with the interpretation of biological sampling results by quantifying important physical characteristics that influence a stream’s ability to support a healthy aquatic community (Heitke et al., 2006; Rowe et al. 2009; Sindt et al., 2012). This document describes aquatic community sampling and physical habitat assessment procedures currently followed in the Iowa stream biological assessment program. Standardized biological sampling and physical habitat assessment procedures were first established following a pilot sampling study in 1994 (IDNR 1994a, 1994b). The procedure documents were last updated in 2001 (IDNR 2001a; 2001b). The biological sampling and physical habitat assessment procedures described below are evaluated on a continual basis. Revision of this working document will occur periodically to reflect additional changes.
Resumo:
Summary of water monitoring conducted by the City of Bondurant and Bondurant-Farrar school students of sites in and around Bondurant.
Resumo:
The U.S. Environmental Protection Agency (EPA), the Alcoa – Davenport Works Facility (Alcoa), and concerned citizens and community leaders of Riverdale, Iowa requested the Iowa Department of Public Health (IDPH) Hazardous Waste Site Health Assessment Program to evaluate the health impacts of exposures to volatile organic vapors detected within residences located immediately to the west of the Alcoa property. This health consultation addresses inhalation exposure to individuals that may have occupied the currently vacant residences in which the air sampling was completed.
Resumo:
In 1982 the Iowa DOT allowed a successful bidder the option of submitting materials and proportions using fly ash to produce a portland cement concrete (PCC) paving mixture to meet a specified compressive strength. The contractor, Irving F. Jensen, received approval for the use of a concrete mixture utilizing 500 lbs. of portland cement and 88 lbs. of fly ash as a replacement of 88 lbs. of portland cement. The PCC mixture was utilized on the Muscatine County US 61 relocation bypass paved as project F-61-4(32)--20-70. A Class "C" fly ash obtained from the Chillicothe electric generating plant approximately 100 miles away was used in the project. This use of fly ash in lieu of portland cement resulted in a cost savings of $64,500 and an energy savings of approximately 16 billion BTU. The compressive strength of this PCC mixture option was very comparable to concrete mixtures produced without the use of fly ash. The pavement has been performing very well. The substitution of fly ash for 15% of the cement has been allowed as a contractor's option since 1984. Due to the cost savings, it has been used in almost all Iowa PCC paving since that time.