22 resultados para multilevel optimization multigrid PDE image restoration
Resumo:
The Department of Natural Resources (IDNR) Lake Restoration Program focuses on restoring impaired lakes to improve the quality of life for Iowans. Communities are rallying around their water resources as they seek population growth and economic success. Communities of the Iowa Great Lakes Region, Storm Lake, Crystal Lake, Creston and Clear Lake are obvious examples, but other communities including Lake View and Brighton are identifying the importance of lakes for their futures as well. The distribution and nature of Vision Iowa grants, Community Attraction and Tourism grants, and now, Great Places, all further emphasize the importance of water to community, quality of life and economic growth.
Resumo:
The Department of Natural Resources (IDNR) Lake Restoration Program focuses on restoring impaired lakes to improve the quality of life for Iowans. Communities are rallying around their water resources as they seek population growth and economic success. Communities of the Iowa Great Lakes Region, Storm Lake, Crystal Lake, Creston and Clear Lake are obvious examples, but other communities including Lake View and Brighton are identifying the importance of lakes for their futures as well. The distribution and nature of Vision Iowa grants, Community Attraction and Tourism grants, and now, Great Places, all further emphasize the importance of water to community, quality of life and economic growth.
Resumo:
The Department of Natural Resources (IDNR) Lake Restoration Program focuses on restoring impaired lakes to improve the quality of life for Iowans. Communities are rallying around their water resources as they seek population growth and economic success. Communities of the Iowa Great Lakes Region, Storm Lake, Crystal Lake, Creston and Clear Lake are obvious examples, but other communities including Lake View and Brighton are identifying the importance of lakes for their futures as well. The distribution and nature of Vision Iowa grants, Community Attraction and Tourism grants, and now, Great Places, all further emphasize the importance of water to community, quality of life and economic growth.
Resumo:
The Department of Natural Resources (IDNR) Lake Restoration Program focuses on restoring impaired lakes to improve the quality of life for Iowans. Communities are rallying around their water resources as they seek population growth and economic success. Communities of the Iowa Great Lakes Region, Storm Lake, Crystal Lake, Creston and Clear Lake are obvious examples, but other communities including Lake View and Brighton are identifying the importance of lakes for their futures as well. The distribution and nature of Vision Iowa grants, Community Attraction and Tourism grants, and now, Great Places, all further emphasize the importance of water to community, quality of life and economic growth.
Resumo:
The Department of Natural Resources (IDNR) Lake Restoration Program focuses on restoring impaired lakes to improve the quality of life for Iowans. Communities are rallying around their water resources as they seek population growth and economic success. Communities of the Iowa Great Lakes Region, Storm Lake, Crystal Lake, Creston and Clear Lake are obvious examples, but other communities including Lake View and Brighton are identifying the importance of lakes for their futures as well. The distribution and nature of Vision Iowa grants, Community Attraction and Tourism grants, and now, Great Places, all further emphasize the importance of water to community, quality of life and economic growth.
Resumo:
Mixture materials, mix design, and pavement construction are not isolated steps in the concrete paving process. Each affects the other in ways that determine overall pavement quality and long-term performance. However, equipment and procedures commonly used to test concrete materials and concrete pavements have not changed in decades, leaving gaps in our ability to understand and control the factors that determine concrete durability. The concrete paving community needs tests that will adequately characterize the materials, predict interactions, and monitor the properties of the concrete. The overall objectives of this study are (1) to evaluate conventional and new methods for testing concrete and concrete materials to prevent material and construction problems that could lead to premature concrete pavement distress and (2) to examine and refine a suite of tests that can accurately evaluate concrete pavement properties. The project included three phases. In Phase I, the research team contacted each of 16 participating states to gather information about concrete and concrete material tests. A preliminary suite of tests to ensure long-term pavement performance was developed. The tests were selected to provide useful and easy-to-interpret results that can be performed reasonably and routinely in terms of time, expertise, training, and cost. The tests examine concrete pavement properties in five focal areas critical to the long life and durability of concrete pavements: (1) workability, (2) strength development, (3) air system, (4) permeability, and (5) shrinkage. The tests were relevant at three stages in the concrete paving process: mix design, preconstruction verification, and construction quality control. In Phase II, the research team conducted field testing in each participating state to evaluate the preliminary suite of tests and demonstrate the testing technologies and procedures using local materials. A Mobile Concrete Research Lab was designed and equipped to facilitate the demonstrations. This report documents the results of the 16 state projects. Phase III refined and finalized lab and field tests based on state project test data. The results of the overall project are detailed herein. The final suite of tests is detailed in the accompanying testing guide.
Resumo:
The major objective of this project is to evaluate image analysis for characterizing air voids in Portland cement contract (PCC) and asphalt concrete (AC) and aggregate gradation in asphalt concrete. Phase 1 of this project has concentrated on evaluation and refinement of sample preparation techniques, evaluation of methods and instruments for conducting image analysis, and finally, analysis and comparison of a select portion of samples. Preliminary results suggest a strong correlation between the results obtained from the linear traverse method and image analysis methods for determining percent air voids in concrete. Preliminary work with asphalt samples has shown that damage caused by a high vacuum of the conventional scanning electron microscope (SEM) may too disruptive. Alternative solutions have been explored, including confocal microscopy and low vacuum electron microscopy. Additionally, a conventional high vacuum SEM operating at a marginal operating vacuum may suffice.