22 resultados para iBeacons iOS app mobile proximity marketing geolocation indoor
Resumo:
Audit report on the Iowa Turkey Marketing Council for the years ended December 31, 2009 and 2008
Resumo:
Audit report on the Iowa Turkey Marketing Council for the years ended December 31, 2010 and 2009
Resumo:
Agreed upon procedures report on the Iowa Turkey Marketing Council for the period January 1, 2011 through December 31, 2012
Resumo:
The purpose of this project was to investigate the potential for collecting and using data from mobile terrestrial laser scanning (MTLS) technology that would reduce the need for traditional survey methods for the development of highway improvement projects at the Iowa Department of Transportation (Iowa DOT). The primary interest in investigating mobile scanning technology is to minimize the exposure of field surveyors to dangerous high volume traffic situations. Issues investigated were cost, timeframe, accuracy, contracting specifications, data capture extents, data extraction capabilities and data storage issues associated with mobile scanning. The project area selected for evaluation was the I-35/IA 92 interchange in Warren County, Iowa. This project covers approximately one mile of I-35, one mile of IA 92, 4 interchange ramps, and bridges within these limits. Delivered LAS and image files for this project totaled almost 31GB. There is nearly a 6-fold increase in the size of the scan data after post-processing. Camera data, when enabled, produced approximately 900MB of imagery data per mile using a 2- camera, 5 megapixel system. A comparison was done between 1823 points on the pavement that were surveyed by Iowa DOT staff using a total station and the same points generated through the MTLS process. The data acquired through the MTLS and data processing met the Iowa DOT specifications for engineering survey. A list of benefits and challenges is included in the detailed report. With the success of this project, it is anticipate[d] that additional projects will be scanned for the Iowa DOT for use in the development of highway improvement projects.
Resumo:
With inflation, there is no longer a completely adequate budget for highway construction and maintenance. Restricted budgets have generated development and implementation of pavement management programs. A need for management guidelines generated National Cooperative Highway Research Program Synthesis of Highway Practice 84, "Evaluation Criteria and Priority Setting for State Highway Programs". Traffic volumes and present conditions are two major factors in determining the priority of a proposed highway improvement. The Iowa DOT, Highway Division, Office of Materials has been conducting pavement condition inventory surveys on a three-year frequency since 1969 as input for pavement management. Development of substantial wheel rutting on paved roadways results in a potential hazard to highway safety. During periods of rain, these water-filled ruts may cause hydroplaning and loss of vehicle control. It is, therefore, imparitive that Iowa roadways be continually monitored for rut depths and further that this data be used in a pavement management program to determine priorities for rehabilitation or resurfacing.
Resumo:
Agreed–upon procedures report on the Iowa Turkey Marketing Council for the period January 1, 2013 through December 31, 2014
Resumo:
Photographic documentation of crashed vehicles at the scene can be used to improve triage of crash victims. A U.S. expert panel developed field triage rules to determine the likelihood of occupants sustaining serious injuries based on vehicle damage that would require transport to a trauma center (Sasser et al., 2011). The use of photographs for assessing vehicle damage and occupant compartment intrusion as it correlates to increased injury severity has been validated (Davidson et al., 2014). Providing trauma staff with crash scene photos remotely could assist them in predicting injuries. This would allow trauma care providers to assess the appropriate transport, as well as develop mental models of treatment options prior to patient arrival at the emergency department (ED). Crash-scene medical response has improved tremendously in the past 20-30 years. This is in part due to the increasing number of paramedics who now have advanced life support (ALS) training that allows independence in the field. However, while this advanced training provides a more streamlined field treatment protocol, it also means that paramedics focused on treating crash victims may not have time to communicate with trauma centers regarding crash injury mechanisms. As a result, trauma centers may not learn about severe trauma patients until just a few minutes before they arrive. The information transmitted by the TraumaHawk app allows interpretation of injury mechanisms from crash scene photos at the trauma center, providing clues about the type and severity of injury. With strategic crash scene photo documentation, trained trauma professionals can assess the severity and patterns of injury based on exterior crush and occupant intrusion. Intrusion increases the force experienced by vehicle occupants, which translates into a higher level of injury severity (Tencer et al., 2005; Assal et al., 2002; Mandell et al., 2010). First responders have the unique opportunity to assess the damaged vehicle at the crash scene, but often the mechanism of injury is limited or not even relayed to ED trauma staff. To integrate photographic and scene information, an app called TraumaHawk was created to capture images of crash vehicles and send them electronically to the trauma center. If efficiently implemented, it provides the potential advantage of increasing lead-time for preparation at the trauma center through the crash scene photos. Ideally, the result is better treatment outcomes for crash victims. The objective of this analysis was to examine if the extra lead-time granted by the TraumaHawk app could improve trauma team activation time over the current conventional communication method.