31 resultados para high-strength steel
Resumo:
The unifying objective of Phases I and II of this study was to determine the feasibility of the post-tensioning strengthening method and to implement the technique on two composite bridges in Iowa. Following completion of these two phases, Phase III was undertaken and is documented in this report. The basic objectives of Phase III were further monitoring bridge behavior (both during and after post-tensioning) and developing a practical design methodology for designing the strengthening system under investigation. Specific objectives were: to develop strain and force transducers to facilitate the collection of field data; to investigate further the existence and effects of the end restraint on the post-tensioning process; to determine the amount of post-tensioning force loss that occurred during the time between the initial testing and the retesting of the existing bridges; to determine the significance of any temporary temperature-induced post-tensioning force change; and to develop a simplified design methodology that would incorporate various variables such as span length, angle-of-skew, beam spacing, and concrete strength. Experimental field results obtained during Phases II and III were compared to the theoretical results and to each other. Conclusions from this research are as follows: (1) Strengthening single-span composite bridges by post-tensioning is a viable, economical strengthening technique. (2) Behavior of both bridges was similar to the behavior observed from the bridges during field tests conducted under Phase II. (3) The strain transducers were very accurate at measuring mid-span strain. (4) The force transducers gave excellent results under laboratory conditions, but were found to be less effective when used in actual bridge tests. (5) Loss of post-tensioning force due to temperature effects in any particular steel beam post-tensioning tendon system were found to be small. (6) Loss of post-tensioning force over a two-year period was minimal. (7) Significant end restraint was measured in both bridges, caused primarily by reinforcing steel being continuous from the deck into the abutments. This end restraint reduced the effectiveness of the post-tensioning but also reduced midspan strains due to truck loadings. (8) The SAP IV finite element model is capable of accurately modeling the behavior of a post-tensioned bridge, if guardrails and end restraints are included in the model. (9) Post-tensioning distribution should be separated into distributions for the axial force and moment components of an eccentric post-tensioning force. (10) Skews of 45 deg or less have a minor influence on post-tensioning distribution. (11) For typical Iowa three-beam and four-beam composite bridges, simple regression-derived formulas for force and moment fractions can be used to estimate post-tensioning distribution at midspan. At other locations, a simple linear interpolation gives approximately correct results. (12) A simple analytical model can accurately estimate the flexural strength of an isolated post-tensioned composite beam.
Resumo:
The Iowa Department of Transportation used a high molecular weight methacrylate (HMWM) resin to seal a 3,340 ft. x 64 ft. bridge deck in October 1986. The sealing was necessary to prevent deicing salt brine from entering a substantial number of transverse cracks that coincided with the epoxy coated top steel and unprotected bottom steel. HMWM resin is a three component product composed of a monomer, a cumene hydroperoxide initiator and a cobalt naphthenate promoter. The HMWM was applied with a dual spray bar system and flat-fan nozzles. Initiated monomer delivered through one spray bar was mixed in the air with promoted monomer from the other spray bar. The application rate averaged 0.956 gallons per 100 square feet for the tined textured driving lanes. Dry sand was broadcast on the surface at an average coverage of 0.58 lbs. per square yard to maintain friction. Coring showed that the HMWM resin penetrated the cracks more than two inches deep. Testing of the treated deck yielded Friction Numbers averaging 33 with a treaded tire compared to 36 prior to treatment. An inspection soon after treatment found five leaky cracks in one of the 15 spans. One inspection during a steady rain showed no leakage, but leakage from numerous cracks occurred during a subsequent rain. A second HMWM application was made on two spans. Leakage through the double application occurred during a rain. Neither the single or double application were successful in preventing leakage through the cracks.
Resumo:
Fast Track concrete has proven to be successful in obtaining high early strengths. This benefit does not come without cost. Special Type III cement and insulating blankets to accelerate the cure add to its expense when compared to conventional paving. This research was intended to determine the benefit derived from the use of insulating blankets to accelerate strength gain in three concrete mixes using Type I cement. The goal was to determine mixes and curing procedures that would result in a range of opening times. This determination would allow the most economical design for a particular project by tailoring it to a specific time restraint. Three mixes of various cement content were tested in the field. Flexural beams were cast for each mix and tested at various ages. Two test sections were placed for each mix, one section being cured with the addition of insulating blankets and the other being cured with only conventional curing compound. Iowa Department of Transportation specifications require 500 psi flexural strength before a pavement can be opened to traffic. Concrete with Fast Track proportions (nominal 7 1/2 bag), Type I cement, and insulating blankets reached that strength in approximately 36 hr, a standard mix (nominal 6 1/2 bag) using the blankets in approximately 48 hr, and the Fast Track proportions with Type I cement without blankets in about 60 hr. The results showed a significant improvement in early strength gain with the use of insulating blankets.
Resumo:
Two composite, prestressed, steel beams, fabricated by slightly different methods, were fatigue tested to destruction. Stresses and deflections were measured at regular intervals, and the behavior of each beam as failure progressed was recorded. Residual stresses were then evaluated by testing segments of each beam. An attempt was made to assess the effects of the residual stresses on fatigue strength.
Resumo:
Triaxial compression tests of two crushed limestones of differing highway service records indicate a fundamental difference in their shear strength -- void ratio relationship. Analyses were based on stress parameters at minimum sample volume, i.e., before there was significant sample dilation due to shear. The better service record sample compacted to higher density, and had a high effective angle of internal friction and zero effective cohesion. The other sample compacted to lower density and had a lower friction angle, but gained significant stability from effective cohesion. Repeated loading-unloading cycles reduced the cohesion, apparently due to modification of the sample structure. Extrapolations of the results to zero void ratio agree with sliding friction data reported on calcite, or with triaxial parameters reported on carbonate rocks.
Resumo:
The interrelation of curing time, curing temperature, strength, and reactions in lime-bentonite-water mixtures was examined. Samples were molded at constant density and moisture content and then cured for periods of from 1 to 56 days at constant temperatures that ranged from 5C to 60C. After the appropriate curing time the samples were tested for unconfined compressive strength. The broken samples were then analyzed by x-ray diffractometer and spectrophotometer to determine the identity of the reaction products present after each curing period. It was found that the strength gain of lime-clay mixtures cured at different temperatures is due to different phases of the complex reaction, lime & clay to CSH(gel) to CSH(II) to CSH(I) to tobermorite. The farther the reaction proceeds, the higher the strength. There was also evidence of lattice substitutions in the structure of the calcium silicate hydrates at curing temperatures of 50C and higher. No consistent relationship between time, temperature, strength, and the S/A ration of reaction products existed, but in order to achieve high strengths the apparent C/S ration had to be less than two. The curing temperature had an effect on the strength developed by a given amount of reacted silica in the cured lime-clay mixture, but at a given curing temperature the cured sample that had the largest amount of reacted silica gave the highest strength. Evidence was found to indicate that during the clay reaction some calcium is indeed adsorbed onto the clay structure rather than entering into a pozzolanic reaction. Finally, it was determined that it is possible to determine the amount of silica and alumina in lime-clay reaction products by spectrophotometric analysis with sufficient accuracy for comparison purposes. The spectrophotometric analysis techniques used during the investigation were simple and were not time consuming.
Resumo:
In reinforced concrete systems, ensuring that a good bond between the concrete and the embedded reinforcing steel is critical to long-term structural performance. Without good bond between the two, the system simply cannot behave as intended. The bond strength of reinforcing bars is a complex interaction between localized deformations, chemical adhesion, and other factors. Coating of reinforcing bars, although sometimes debated, has been commonly found to be an effective way to delay the initiation of corrosion in reinforced concrete systems. For many years, the standard practice has been to coat reinforcing steel with an epoxy coating, which provides a barrier between the steel and the corrosive elements of water, air, and chloride ions. Recently, there has been an industry-led effort to use galvanizing to provide the protective barrier commonly provided by traditional epoxy coatings. However, as with any new structural product, questions exist regarding both the structural performance and corrosion resistance of the system. In the fall of 2013, Buchanan County, Iowa constructed a demonstration bridge in which the steel girders and all internal reinforcing steel were galvanized. The work completed in this project sought to understand the structural performance of galvanized reinforcing steel as compared to epoxy-coated steel and to initiate a long-term corrosion monitoring program. This work consisted of a series of controlled laboratory tests and the installation of a corrosion monitoring system that can be observed for years in the future. The results of this work indicate there is no appreciable difference between the bond strength of epoxy-coated reinforcing steel and galvanized reinforcing steel. Although some differences were observed, no notable difference in either peak load, slip, or failure mode could be identified. Additionally, a long-term monitoring system was installed in this Buchanan County bridge and, to date, no corrosion activity has been identified.
Resumo:
In the past, culvert pipes were made only of corrugated metal or reinforced concrete. In recent years, several manufacturers have made pipe of lightweight plastic - for example, high density polyethylene (HDPE) - which is considered to be viscoelastic in its structural behavior. It appears that there are several highway applications in which HDPE pipe would be an economically favorable alternative. However, the newness of plastic pipe requires the evaluation of its performance, integrity, and durability; A review of the Iowa Department of Transportation Standard Specifications for Highway and Bridge Construction reveals limited information on the use of plastic pipe for state projects. The objective of this study was to review and evaluate the use of HDPE pipe in roadway applications. Structural performance, soil-structure interaction, and the sensitivity of the pipe to installation was investigated. Comprehensive computerized literature searches were undertaken to define the state-of-the-art in the design and use of HDPE pipe in highway applications. A questionnaire was developed and sent to all Iowa county engineers to learn of their use of HDPE pipe. Responses indicated that the majority of county engineers were aware of the product but were not confident in its ability to perform as well as conventional materials. Counties currently using HDPE pipe in general only use it in driveway crossings. Originally, we intended to survey states as to their usage of HDPE pipe. However, a few weeks after initiation of the project, it was learned that the Tennessee DOT was in the process of making a similar survey of state DOT's. Results of the Tennessee survey of states have been obtained and included in this report. In an effort to develop more confidence in the pipe's performance parameters, this research included laboratory tests to determine the ring and flexural stiffness of HDPE pipe provided by various manufacturers. Parallel plate tests verified all specimens were in compliance with ASTM specifications. Flexural testing revealed that pipe profile had a significant effect on the longitudinal stiffness and that strength could not be accurately predicted on the basis of diameter alone. Realizing that the soil around a buried HDPE pipe contributes to the pipe stiffness, the research team completed a limited series of tests on buried 3 ft-diameter HDPE pipe. The tests simulated the effects of truck wheel loads above the pipe and were conducted with two feet of cover. These tests indicated that the type and quality of backfill significantly influences the performance of HDPE pipe. The tests revealed that the soil envelope does significantly affect the performance of HDPE pipe in situ, and after a certain point, no additional strength is realized by increasing the quality of the backfill.
Resumo:
The Iowa DOT has been using blended cements in ternary mixes since 1999. Use of these supplementary cementitious materials gives concrete with higher strengths and much lower permeability. Use of these materials has been incorporated for use in High Performance Concrete (HPC) decks to achieve lower permeability and thus long term performance. Since we have been using these materials in paving, it would be informative to determine what concrete pavement properties are enhanced as related to high performance concrete. The air void system was excellent at a spacing factor of 0.0047 in (0.120 mm). AVA spacing factor results are much higher than the hardened air void analysis. Although only 3 samples were tested between the image analysis air content and the RapidAir457, there is pretty good agreement between those test methods. Air void analysis indicates that excessive vibration was not required to place the concrete. Vibration was well within the specification limits with an average of 6683 vpm’s with a standard deviation of 461. Overall ride of the project was very good. The average smoothness for the project was 2.1 in/mile (33.8 mm/km). The International Roughness Index (IRI) was 81 in/mi (1.29 m/km). The compressive strength was 6260 psi (43.2 MPa) at 28 days and 6830 (47.1 MPa) at 56 days. The modulus of rupture by third point loading (MOR-TPL) tested at 28 days was 660 psi (4.55 MPa). The AASHTO T277 rapid chloride permeability results at 28 days using the Virginia cure method correlate fairly well with the 56 and 90 day results with standard curing. The Virginia cure method 28 day results were 2475 coulombs and the standard cure 56 and 90 day test results were 2180 and 2118, respectively.
Resumo:
There are hundreds of structurally deficient or functionally obsolete bridges in the state of Iowa. With the majority of these bridges located on rural county roads where there is limited funding available to replace the bridges, diagnostic load testing can be utilized to determine the actual load carrying capacity of the bridge. One particular family or fleet of bridges that has been determined to be desirable for load testing consists of single-span bridges with non-composite, cast-in-place concrete decks, steel stringers, and timber substructures. Six bridges with poor performing superstructure and substructure from the aforementioned family of bridges were selected to be load tested. The six bridges were located on rural roads in five different counties in Iowa: Boone, Carroll, Humboldt, Mahaska, and Marshall. Volume I of this report focuses on evaluating the superstructure for this family of bridges. This volume discusses the behavior characteristics that influence the load carrying capacity of this fleet of bridges. In particular, the live load distribution, partial composite action, and bearing restraint were investigated as potential factors that could influence the bridge ratings. Implementing fleet management practices, the bridges were analyzed to determine if the load test results could be predicted to better analyze previously untested bridges. For this family of bridges it was found that the ratings increased as a result of the load testing demonstrating a greater capacity than determined analytically. Volume II of this report focuses on evaluating the timber substructure for this family of bridges. In this volume, procedures for detecting pile internal decay using nondestructive ultrasonic stress wave techniques, correlating nondestructive ultrasonic stress wave techniques to axial compression tests to estimate deteriorated pile residual strength, and evaluating load distribution through poor performing timber substructure elements by instrumenting and load testing the abutments of the six selected bridges are discussed. Also, in this volume pile repair methods for restoring axial and bending capacities of pile are developed and evaluated.
Resumo:
Problems with unknown bridge foundations in Iowa are often associated with timber substructures. Timber piles are subject to biological and physical deterioration, which makes quantifying in-service pile capacity difficult. Currently there are no reliable means to estimate the residual carrying capacity of an in-service deteriorated pile; and thus, the overall safety of the bridge cannot be determined. The lack of reliable evaluation methods can lead to conservative and costly maintenance practices. This research study was undertaken to investigate procedures for assessing bridge substructures, and evaluating procedures for rehabilitating/strengthening/replacing inadequate substructure components. The report includes an extensive literature review, a field reconnaissance study of 49 bridges, a survey of substructure problems from the perspective of County Engineers, a laboratory study aiming to correlate nondestructive tests to residual pile strength and stiffness values, nondestructive and destructive load tests for 6 bridges with poor substructures, and finally a laboratory study evaluating selected repair methods.
Resumo:
The strategic plan for bridge engineering issued by AASHTO in 2005 identified extending the service life and optimizing structural systems of bridges in the United States as two grand challenges in bridge engineering, with the objective of producing safer bridges that have a minimum service life of 75 years and reduced maintenance cost. Material deterioration was identified as one of the primary challenges to achieving the objective of extended life. In substructural applications (e.g., deep foundations), construction materials such as timber, steel, and concrete are subjected to deterioration due to environmental impacts. Using innovative and new materials for foundation applications makes the AASHTO objective of 75 years service life achievable. Ultra High Performance Concrete (UHPC) with compressive strength of 180 MPa (26,000 psi) and excellent durability has been used in superstructure applications but not in geotechnical and foundation applications. This study explores the use of precast, prestressed UHPC piles in future foundations of bridges and other structures. An H-shaped UHPC section, which is 10-in. (250-mm) deep with weight similar to that of an HP10×57 steel pile, was designed to improve constructability and reduce cost. In this project, instrumented UHPC piles were cast and laboratory and field tests were conducted. Laboratory tests were used to verify the moment-curvature response of UHPC pile section. In the field, two UHPC piles have been successfully driven in glacial till clay soil and load tested under vertical and lateral loads. This report provides a complete set of results for the field investigation conducted on UHPC H-shaped piles. Test results, durability, drivability, and other material advantages over normal concrete and steel indicate that UHPC piles are a viable alternative to achieve the goals of AASHTO strategic plan.
Resumo:
Cities and counties in Iowa have more than 8,890 steel bridges, most of which are painted with red lead paint. The Iowa Department of Transportation (Iowa DOT) maintains less than 35 bridges coated with red lead paint, including seven of the large border bridges over the Mississippi and Missouri Rivers. Because of the federal and state regulations for bridge painting, many governmental agencies have opted not to repaint, or otherwise maintain, lead paint coatings. Consequently, the paint condition on many of these bridges is poor, and some bridges are experiencing severe rusting of structural members. This research project was developed with two objectives: 1) to evaluate the effectiveness of preparing the structural steel surface of a bridge with high pressure water jetting instead of abrasive blasting and 2) to coat the structural steel surface with a moisture-cured polyurethane paint under different surface preparation conditions.
Resumo:
Recent data compiled by the National Bridge Inventory revealed 29% of Iowa's approximate 24,600 bridges were either structurally deficient or functionally obsolete. This large number of deficient bridges and the high cost of needed repairs create unique problems for Iowa and many other states. The research objective of this project was to determine the load capacity of a particular type of deteriorating bridge – the precast concrete deck bridge – which is commonly found on Iowa's secondary roads. The number of these precast concrete structures requiring load postings and/or replacement can be significantly reduced if the deteriorated structures are found to have adequate load capacity or can be reliably evaluated. Approximately 600 precast concrete deck bridges (PCDBs) exist in Iowa. A typical PCDB span is 19 to 36 ft long and consists of eight to ten simply supported precast panels. Bolts and either a pipe shear key or a grouted shear key are used to join adjacent panels. The panels resemble a steel channel in cross-section; the web is orientated horizontally and forms the roadway deck and the legs act as shallow beams. The primary longitudinal reinforcing steel bundled in each of the legs frequently corrodes and causes longitudinal cracks in the concrete and spalling. The research team performed service load tests on four deteriorated PCDBs; two with shear keys in place and two without. Conventional strain gages were used to measure strains in both the steel and concrete, and transducers were used to measure vertical deflections. Based on the field results, it was determined that these bridges have sufficient lateral load distribution and adequate strength when shear keys are properly installed between adjacent panels. The measured lateral load distribution factors are larger than AASHTO values when shear keys were not installed. Since some of the reinforcement had hooks, deterioration of the reinforcement has a minimal affect on the service level performance of the bridges when there is minimal loss of cross-sectional area. Laboratory tests were performed on the PCDB panels obtained from three bridge replacement projects. Twelve deteriorated panels were loaded to failure in a four point bending arrangement. Although the panels had significant deflections prior to failure, the experimental capacity of eleven panels exceeded the theoretical capacity. Experimental capacity of the twelfth panel, an extremely distressed panel, was only slightly below the theoretical capacity. Service tests and an ultimate strength test were performed on a laboratory bridge model consisting of four joined panels to determine the effect of various shear connection configurations. These data were used to validate a PCDB finite element model that can provide more accurate live load distribution factors for use in rating calculations. Finally, a strengthening system was developed and tested for use in situations where one or more panels of an existing PCDB need strengthening.
Resumo:
The main objective of this study is to determine the effectiveness of the Electrochemical Chloride Extraction (ECE) technique on a bridge deck with very high concentrations of chloride. This ECE technique was used during the summer of 2003 to reverse the effects of corrosion, which had occurred in the reinforcing steel embedded in the pedestrian bridge deck over Highway 6, along Iowa Avenue, in Iowa City, Iowa, USA. First, the half cell potential was measured to determine the existing corrosion level in the field. The half-cell potential values were in the indecisive range of corrosion (between -200 mV and -350 mV). The ECE technique was then applied to remove the chloride from the bridge deck. The chloride content in the deck was significantly reduced from 25 lb/cy to 4.96 lb/cy in 8 weeks. Concrete cores obtained from the deck were measured for their compressive strengths and there was no reduction in strength due to the ECE technique. Laboratory tests were also performed to demonstrate the effectiveness of the ECE process. In order to simulate the corrosion in the bridge deck, two reinforced slabs and 12 reinforced beams were prepared. First, the half-cell potentials were measured from the test specimens and they all ranged below -200 mV. Upon introduction of 3% salt solution, the potential reached up to -500 mV. This potential was maintained while a salt solution was being added for six months. The ECE technique was then applied to the test specimens in order to remove the chloride from them. Half-cell potential was measured to determine if the ECE technique can effectively reduce the level of corrosion.