21 resultados para course reserves
Factors Influencing Stability of Granular Base Course Mixes, Progress Report, HR-99, 1964 (November)
Resumo:
The problems of laboratory compaction procedures, the effect of gradation and mineralogy on shearing strength, and effect of stabilizing agents on shearing strength of granular base course mixes are discussed. For the materials tested, a suitable laboratory compaction procedure was developed which involves the use of a vibratory table to prepare triaxial test specimens. A computer program has been developed to facilitate the analysis of the test data of the effect of gradation and mineralogy on shearing strength of soils. The effects of the following materials have been selected for evaluation as stabilizing agents’ portland cement, sodium and calcium chloride, lime organic cationic waterproofer, and asphaltic materials.
Resumo:
Results are presented of triaxial testing of three crushed limestones to which either hydrated high-calcium lime, sodium chloride or calcium chloride had been added. Lime was added at rates of 1, 3, 10 and 16 percent, chlorides were added at 0.5 percent rate only. Speciments were compacted using vibratory compaction apparatus and were tested in triaxial compression using lateral pressures from 10 to 100 psi. Triaxial test results indicate that: (1) sodium chloride slightly decreased the angle of internal friction and increased cohesion, (2) calcium chloride slightly increased the angle of internal friction and decreased cohesion, and (3) lime had no appreciable effect on angle of internal friction but increased cohesion, decreased density and increased pore water pressure.
Resumo:
A highway base course may be defined as a layer of granular material which lies immediately below the wearing surface of a pavement and must possess high resistance to deformation in order to withstand pressures imposed by traffic. A material commonly used for base course construction is crushed limestone. Sources of limestone, acceptable for highway bases in the state of Iowa, occur almost entirely in the Pennsylvanian, Mississippian and Devonian strata. Performance records of the latter two have been quite good, while material from the Pennsylvanian stratum has failed on numerous occasions. The study reported herein is one segment of an extensive research program on compacted crushed limestone used for flexible highway base courses. The primary goals of the total study are: 1. Determination of a suitable and realistic laboratory method of compaction. 2. Effect of gradation, and mineralogy of the fines, on shearing strength. 3. Possible improvement of the shear strength with organic and inorganic chemical stabilization additives. Although the study reported herein deals primarily with the third goal, information gathered from work on the first two was required for this investigation. The primary goal of this study was the evaluation of various factors of stability of three crushed limestones when treated with small amounts of type I Portland cement. Investigation of the untreated materials has indicated that shear strength alone is not the controlling factor for stability of crushed stone bases. Thus the following observations were made in addition to shear strength parameters, to more adequately ascertain the stability of the cement treated materials: 1. Volume change during consolidation and shear testing. 2. Pore pressure during shear. The consolidated-undrained triaxial shear test was used for determination of the above factors.
Resumo:
This Plan Reading Course was developed by the Department of Civil and Construction Engineering of Iowa State University under contract with the Iowa Highway Research Board, Project HR-324. It is intended to be an instructional tool for Iowa DOT, county and municipal employees within the state of Iowa. Under this contract, a previous Plan Reading Course, prepared for the Iowa State Highway Commission in 1965, has been completely revised using a new format, new plans, updated specifications, and new material. This course is a self-taught course consisting of two parts; Highway Plans, and Bridge and Culvert plans. Each part consists of a self-instruction book, a set of plans, a question booklet, and an answer booklet. This is the self-instruction book for the Bridge and Culvert Plans part of the course. The example structures included in this part of the course are a prestressed concrete beam bridge and a reinforced concrete box culvert.
Resumo:
This booklet is part of the Bridge Plan Reading Course developed by the Department of Civil and Construction Engineering of Iowa State University under contract with the Highway Research Advisory Board, Project HR-324. It is intended to be an instructional tool for Iowa DOT and county and municipal employees within the state of Iowa. The questions in this booklet are designed to test your knowledge of the material in the Bridge Plan Reading Course. You are free to use both the plans and the text material to assist you in answering these questions. There is a separate ANSWER BOOKLET which contains the answers to these questions. Consult that booklet to make sure you have answered these questions correctly. If you miss the answer to a question, go back and review the text material and the plans to make sure you understand the correct answer.
Resumo:
This comprehensive guide, updated for the 2015-2015 academic year, provides financial aid information, as well as a directory of Iowa colleges and universities to assist students and families with the college selection process.