28 resultados para construct elicitation
Resumo:
Iowa's secondary road network contains nearly 15,000 bridges which are less than 12 m (40 ft) long. Many of these bridges were built several decades ago and need to be replaced. Box culvert construction has proven to be an adequate bridge replacement technique. An alternative to box culverts is the Air-O-Form method of arch culvert construction. The Air-O-Form method has several potential advantages over box culvert construction. The new technique uses inflated balloons as the interior form in the construction of an arch culvert. Concrete is then shotcreted onto the balloon form to complete the arch culvert. The objective of the research project was to construct an air formed arch culvert to determine its applicability as an alternative county bridge replacement technique. The project had the following results: (1) The Air-O-Form method can be used to construct a structurally sound arch culvert; and (2) The method must become more economical if it is to compete with box culverts.
Resumo:
Stream degradation due to steep stream gradients and large deposits of loess soil is a serious problem in western Iowa. One solution to this problem is to construct grade stabilization structures at critical points along the length of the stream. Iowa Highway Research Board project HR-236, "Pottawattamie County Evaluation of Control Structures for Stabilizing Degrading Stream Channels", was initiated in order to study the effectiveness of such structures in preventing stream degradation. This report describes the construction and 4-year performance of a gabion drop structure constructed along Keg Creek during the winter of 1982-83.
Resumo:
Recent reports have indicated that 23.5% of the nation's highway bridges are structurally deficient and 17.7% are functionally obsolete. A significant number of these bridges are on the Iowa secondary road system where over 86% of the rural bridge management responsibilities are assigned to the counties. Some of the bridges can be strengthened or otherwise rehabilitated, but many more are in need of immediate replacement. In a recent investigation (HR-365 "Evaluation of Bridge Replacement Alternatives for the County Bridge System") several types of replacement bridges that are currently being used on low volume roads were identified. It was also determined that a large number of counties (69%) have the ability and are interested in utilizing their own forces to design and construct short span bridges. After reviewing the results from HR-365, the research team developed one "new" bridge replacement concept and a modification of a replacement system currently being used. Both of these bridge replacement alternatives were investigated in this study, the results of which are presented in two volumes. This volume (Volume 2) presents the results of Concept 2 - Modification of the Beam-in-Slab Bridge. Concept 1 - Steel Beam Precast Units is presented in Volume 1. Concept 2 involves various laboratory tests of the Beam-in-Slab bridge (BISB) currently being used by Benton County and several other Iowa counties. In this investigation, the behavior and strength of the BISB were determined; a new method of obtaining composite action between the steel beams and concrete was also tested. Since the Concept 2 bridge is primarily intended for use on low-volume roads, the system can be constructed with new or used beams. In the experimental part of the investigation, there were three types of laboratory tests: push-out tests, service and ultimate load tests of models of the BISB, and composite beam tests utilizing the newly developed shear connection. In addition to the laboratory tests, there was a field test in which an existing BISB was service load tested. An equation was developed for predicting the strength of the shear connection investigated; in addition, a finite element model for analyzing the BISB was also developed. Push-out tests were completed to determine the strength of the recently developed shear connector. A total of 36 specimens were tested, with variables such as hole diameter, hole spacing, presence of reinforcement, etc. being investigated. In the model tests of the BISB, two and four beam specimens [L=9,140 mm (30 ft)] were service load tested for behavior and load distribution data. Upon completion of these tests, both specimens were loaded to failure. In the composite beam tests, four beams, one with standard shear studs and three using the shear connection developed, were tested. Upon completion of the service load tests, all four beams were loaded to failure. The strength and behavior of the beams with the new shear connection were found to be essentially the same as that of the specimen with standard shear studs.
Resumo:
This project continues the research which addresses the numerous bridge problems on the Iowa secondary road system. It is a continuation (Phase 2) of Project HR-382, in which two replacement alternatives (Concept 1: Steel Beam Precast Units and Concept 2: Modification of the Benton County Beam-in-Slab Bridge) were investigated. In previous research for concept 1, a precast unit bridge was developed through laboratory testing. The steel-beam precast unit bridge requires the fabrication of precast double-tee (PCDT) units, each consisting of two steel beams connected by a reinforced concrete deck. The weight of each PCDT unit is minimized by limiting the deck thickness to 4 in., which permits the units to be constructed off-site and then transported to the bridge site. The number of units required is a function of the width of bridge desired. Once the PCDT units are connected, a cast-in-place reinforced concrete deck is cast over the PCDT units and the bridge railing attached. Since the steel beam PCDT unit bridge design is intended primarily for use on low-volume roads, used steel beams can be utilized for a significant cost savings. In previous research for concept 2, an alternate shear connector (ASC) was developed and subjected to static loading. In this investigation, the ASC was subjected to cyclic loading in both pushout specimens and composite beam tests. Based on these tests, the fatigue strength of the ASC was determined to be significantly greater than that required in typical low volume road single span bridges. Based upon the construction and service load testing, the steel-beam precast unit bridge was successfully shown to be a viable low volume road bridge alternative. The construction process utilized standard methods resulting in a simple system that can be completed with a limited staff. Results from the service load tests indicated adequate strength for all legal loads. An inspection of the bridge one year after its construction revealed no change in the bridge's performance. Each of the systems previously described are relatively easy to construct. Use of the ASC rather than the welded studs significantly simplified the work, equipment, and materials required to develop composite action between the steel beams and the concrete deck.
Wind Tunnel Analysis of the Effects of Planting at Highway Grade Separation Structures, HR-202, 1979
Resumo:
Blowing and drifting snow has been a problem for the highway maintenance engineer virtually since the inception of the automobile. In the early days, highway engineers were limited in their capability to design and construct drift free roadway cross sections, and the driving public tolerated the delays associated with snow storms. Modern technology, however, has long since provided the design expertise, financial resources, and construction capability for creating relatively snowdrift free highways, and the driver today has come to expect a highway facility that is free of snowdrifts, and if drifts develop they expect highway maintenance crews to open the highway within a short time. Highway administrators have responded to this charge for better control of snowdrifting. Modern highway designs in general provide an aerodynamic cross section that inhibits the deposition of snow on the roadway insofar as it is economically feasible to do so.
Resumo:
Two lanes of a major four-lane arterial street in Cedar Rapids, Iowa, needed reconstruction. Because of the traffic volume and the detour problem, closure of the intersections, even for 1 day was not feasible. Use of Fast Track concrete paving on the mainline portion of the project permitted achievement of the opening strength of 400 psi in less than 12 hr. Fast Track II, used for the intersections, achieved the opening strength of 350 psi in 6 to 7 hr. Flexural and compression specimens of two sections each in the Fast Track and Fast Track II sections were subjected to pulse velocity tests. Maturity curves were developed by monitoring the temperatures. Correlations were performed between the pulse velocity and flexural strength and between the maturity and flexural strength. The project established the feasibility of using Fast Track II to construct portland cement concrete pavement at night and opening the roadway to traffic the next day.
Resumo:
When referenced, the 2012 edition of the Iowa Department of Transportation’s (Iowa DOT) Standard Specifications for Highway and Bridge Construction shall be used for contract work awarded by the Iowa DOT. They may also be incorporated by reference in other contract work on secondary, urban, local systems, or other contract work in which the Iowa DOT has an interest. As modified by the General Supplemental Specifications, these Standard Specifications represent the minimum requirements and may be modified by Supplemental Specifications, Developmental Specifications, and Special Provisions on specific contracts. These Standard Specifications have been written so the Contractor’s responsibilities are indicated by plain language using the Imperative Mood and Active Voice form. Sentences are of the form: Construct isolation joints at all points where driveways meet other walks, curbs, or fixtures in the surface. Ensure finished members are true to detailed dimensions and free from twists, bends, open joints, or other defects resulting from faulty fabrication or defective work. Personnel preparing the JMF shall be Iowa DOT certified in bituminous mix design. The Contracting Authority’s responsibilities are (with some exceptions) indicated by the use of the modal verb “will”. Sentences are of the form: The Engineer will obtain and test density samples for each lot according to Materials I.M. 204. Payment will be the contract unit price for Fabric Reinforcement per square yard (square meter). These standard specifications contain dual units of measure: the United States Standard measure (English units) and the International System of Units (SI or “metric” units). The English units are expressed first then followed by the metric units in parentheses. The measurements expressed in the two systems are not necessarily equal. In some cases the measurements in metric units is a “hard” conversion of the English measurement; i.e. the metric unit has been approximated with a rounded, rationalized metric measurement that is easy to work with and remember. The proposal form will identify whether the work was designed and shall be constructed in English or metric units.
Resumo:
In coordination with a Technical Advisory Committee (TAC) consisting of County Engineers and Iowa DOT representatives, the Iowa DOT has proposed to develop a set of standards for a single span prefabricated bridge system for use on the local road system. The purpose of the bridge system is to improve bridge construction, accelerate project delivery, improve worker safety, be cost effective, reduce impacts to the travelling public by reducing traffic disruptions and the duration of detours, and allow local forces to construct the bridges. HDR Inc. was selected by the Iowa DOT to perform the initial concept screening of the bridge system. This Final Report summarizes the initial conceptual effort to investigate potential systems, make recommendations for a preferred system and propose initial details to be tested in the laboratory in Phase 2 of the project. The prefabricated bridge components were to be based on the following preliminary criteria set forth by the TAC. The criteria were to be verified and/ or modified as part of the conceptual development. - 24’ and 30’ roadway widths - Skews of 0o, 15o, and 30o - Span lengths of 30’ – 70’ in 10’ increments using precast concrete beams - Voided box beams could be considered - Limit precast element weight to 45,000 pounds for movement and placement of beams - Beams could be joined transversely with threaded rods - Abutment concepts may included precast as well as an option for cast-in-place abutments with pile foundations In addition to the above criteria, there was an interest to use a single-width prefabricated bridge component to simplify fabrication as well as a desire to utilize non-prestressed concrete systems where possible to allow for precasting of the beam modules by local forces or local precast plants. The SL-1 modular steel bridge rail was identified for use with this single span prefabricated bridge system.
Resumo:
Utilizing enhanced visualization in transportation planning and design gained popularity in the last decade. This work aimed at demonstrating the concept of utilizing a highly immersive, virtual reality simulation engine for creating dynamic, interactive, full-scale, three-dimensional (3D) models of highway infrastructure. For this project, the highway infrastructure element chosen was a two-way, stop-controlled intersection (TWSCI). VirtuTrace, a virtual reality simulation engine developed by the principal investigator, was used to construct the dynamic 3D model of the TWSCI. The model was implemented in C6, which is Iowa State University’s Cave Automatic Virtual Environment (CAVE). Representatives from the Institute of Transportation at Iowa State University, as well as representatives from the Iowa Department of Transportation, experienced the simulated TWSCI. The two teams identified verbally the significant potential that the approach introduces for the application of next-generation simulated environments to road design and safety evaluation.
Resumo:
Six subject areas prompted the broad field of inquiry of this mission-oriented dust control and surface improvement project for unpaved roads: • DUST--Hundreds of thousands of tons of dust are created annually by vehicles on Iowa's 70,000 miles of unpaved roads and streets. Such dust is often regarded as a nuisance by Iowa's highway engineers. • REGULATIONS--Establishment of "fugitive dust" regulations by the Iowa DEQ in 1971 has created debates, conferences, legal opinions, financial responsibilities, and limited compromises regarding "reasonable precaution" and "ordinary travel," both terms being undefined judgment factors. • THE PUBLIC--Increased awareness by the public that regulations regarding dust do in fact exist creates a discord of telephone calls, petitions, and increasing numbers of legal citations. Both engineers and politicians are frustrated into allowing either the courts or regulatory agencies to resolve what is basically a professional engineering responsibility. • COST--Economics seldom appear as a tenet of regulatory strategies, and in the case of "fugitive dust," four-way struggles often occur between the highway professions, political bodies, regulatory agencies, and the general public as to who is responsible, what can be done, how much it will cost, or why it wasn't done yesterday. • CONFUSION--The engineer lacks authority, and guidelines and specifications to design and construct a low-cost surf acing system are nebulous, i.e., construct something between the present crushed stone/gravel surface and a high-type pavement. • SOLUTION--The engineer must demonstrate that dust control and surface improvement may be engineered at a reasonable cost to the public, so that a higher degree of regulatory responsibility can be vested in engineering solutions.
Resumo:
Concrete paving is often at a disadvantage in terms of pavement type selection due to the time of curing required prior to opening the pavement to traffic. The State of Iowa has been able to reduce traffic delay constraints through material selection and construction methods to date. Methods for monitoring concrete strength gain and quality have not changed since the first concrete pavements were constructed in Iowa. In 1995, Lee County and the Iowa DOT cooperated in a research project, HR-380, to construct a 7.1 mile (11. 43 km) project to evaluate the use of maturity and pulse velocity nondestructive testing (NDT) methods in the estimation of concrete strength gain. The research identified the pros and cons of each method and suggested an instructional memorandum to utilize maturity measurements to meet traffic delay demands. Maturity was used to reduce the traffic delay opening time from 5-7 days to less than 2 days through the implementation of maturity measurements and special traffic control measures. Recommendations on the development of the maturity curve for each project and the location and monitoring of the maturity thermocouples are included. Examples of equipment that could easily be used by project personnel to estimate the concrete strength using the maturity methods is described.
Resumo:
Several strategies are available to the Iowa Department of Transportation (IaDOT) for limiting deterioration due to chloride-induced corrosion of embedded reinforcing bars in concrete bridge decks. While the method most commonly used throughout the Midwestern United States is to construct concrete bridge decks with fusion-bonded epoxy-coated reinforcing bars, galvanized reinforcing bars are an available alternative. Previous studies of the in situ performance of galvanized reinforcing bars in service in bridge decks have been limited. IaDOT requested that Wiss, Janney, Elstner Associates, Inc. (WJE) perform this study to gain further understanding of the long-term performance of an Iowa bridge deck reinforced with galvanized reinforcing bars. This study characterized the condition of a bridge deck with galvanized reinforcing bars after about 36 years of service and compared that performance to the expected performance of epoxy-coated or uncoated reinforcing bars in similar bridge construction. For this study, IaDOT selected the Iowa State Highway 92 bridge across Drainage Ditch #25 in Louisa County, Iowa (Structure No. 5854.5S092), which was constructed using galvanized reinforcing bars as the main deck reinforcing. The scope of work for this study included: field assessment, testing, and sampling; laboratory testing and analysis; analysis of findings; service life modeling; and preparation of this report. In addition, supplemental observations of the condition of the galvanized reinforcing bars were made during a subsequent project to repair the bride deck.
Resumo:
The Proposed Action consists of the improvement of Iowa Highway 58 (IA 58) from U.S. Highway 20 (U.S. 20) north to Greenhill Road in Cedar Falls (Black Hawk County, Iowa). The improvement would include limiting at-grade access to IA 58 by adding one or more interchanges to the corridor which would be located at Viking Road, Greenhill Road, and reconfiguring the U.S. 20 interchange (Figure 1). In order to construct these interchanges and associated ramps, the pavement of IA 58 would be reconstructed. In a couple of locations, the alignment of IA 58 would be shifted.