21 resultados para class size
Resumo:
Soils consist largely of mineral particles in a wide range of sizes. It is advantageous to assign names, such as "sand", etc., to describe particles which lie between certain size limits. These names are convenient to use and give more information than merely stating that the particles fit certain size limitations. Many systems of particle-size limits have been proposed and used, and have many discrepancies. For example, depending on the system used, a term such as "sand" may designate very different materials. Since no clear-cut divisions can be made between members of a continuous series all particle-size limit schemes are arbitrary. The originators of the various systems were influenced by many factors: convenience of investigation, methods and equipment available for analysis, ease of presenting data, convenience for statistical analysis, previous work, and systems in use. The complications were further compounded because of widely varying fields of endeavor with varying background, outlook, and goals. For example, many inconsistencies are found in engineering depending on whether the size limits are used to differentiate soils, or characterize aggregates for concrete. Some of the investigators have tried to place limits to correspond with the various properties of the soil components; others were more interested in the ease and convenience of obtaining and presenting data. The purpose of this paper is to review many of the systems which have been proposed and used, and if possible, to suggest what may have been the reasons for the selection of the particle-size limits.
Resumo:
In Illinois and Iowa, the author finds that plants with approximately 750 employees have suffered the highest strike-frequency rate. Why at this size? Among other explanations, it is posited that in significantly smaller plants labor-management relations can be personalized-and tensions reduced-while in appreciably larger plants sophistication in dealing with disputes may, of necessity, have been developed. C. Fred Eisele is a graduate teaching assistant at the University of Iowa's College of Business Administration.
Resumo:
Four classes of variables are apparent in the problem of scour around bridge piers and abutments--geometry of piers and abutments, stream-flow characteristics, sediment characteristics, and geometry of site. The laboratory investigation, from its inception, has been divided into four phases based on these classes. In each phase the variables in three of the classes are held constant and those in the pertinent class are varied. To date, the first three phases have been studied. Typical scour bole patterns related to the geometry of the pier or abutment have been found. For equilibrium conditions of scour with uniform sand, the velocity of flow and the sand size do not appear to have any measurable effects on the depth of scour. This result is especially encouraging in the search for correlation between model and prototype since it would indicate that, primarily, only the depth of flow might be involved in the scale effect. The technique of model testing has been simplified, therefore, because rate of sediment transportation does not need to be scaled. Prior to the establishment of equilibrium conditions, however, depths of scour in excess of those for equilibrium conditions have been found. A concept of active scour as an imbalance between sediment transport capacity and rate of sediment supply has been used to explain the laboratory observations.
Resumo:
The use of High Performance Concrete (HPC) in Iowa has consisted of achieving slightly higher compressive strengths with an emphasis on reduced permeability. Concrete with reduced permeability has increased durability by slowing moisture and chloride ingress. Achieving reduced permeability has typically been accomplished with combinations of slag and Class C fly ash, or the use of blended cements such as locally available Type IS(20), IS(25) and Type IP(25) in conjunction with Class C fly ash. Fly ash has been used in the majority of concrete placed in Iowa since 1984 and slag has been available in Iowa since 1995. During the economic downturn in 2008, one of the cement plants that produced a Type IS(25) cement was forced to shut down, which reduced the availability of blended cements, typically used on HPC deck overlays. Recently, a source of high reactivity metakaolin has been made available. Metakaolin is produced by heating a pure kaolinite clay to 650 to 700 °C in a rotary kiln (calcining). Metakaolin is a white pozzolan that is used to produce concrete with increased strengths, reduced permeability, reduced efflorescence, and resistance to alkali silica reactivity. The W.R. Grace MK-100 metakaolin will likely be available in dissolvable bags between 25 and 50 pounds. Thus, the mix designs were based on the anticipated bag size range for field use. This research evaluated metakaolin mixes with and without Class C fly ash. Results indicated a seven percent replacement with metakaolin produced concrete with increased strengths and low permeability. When used with Class C fly ash, permeability is reduced to very low rating. Metakaolin may be used to enhance hardened concrete properties for use in high performance concrete (HPC).
Resumo:
Fast track concrete has proven to be successful in obtaining high early strengths. This benefit does not come without cost. Type III cement and insulation blankets to accelerate the cure add to its expense when compared to conventional paving. This research was intended to determine the increase in time required to obtain opening strength when a fast track mix utilized conventional Type I cement and also used a conventional cure. Standard concrete mixes also were tested to determine the acceleration of strength gain when cured with insulation blankets. The goal was to determine mixes and procedures which would result in a range of opening times. This would allow the most economical design for a particular project and tailor it to that projects time restraint. Three mixes were tested: Class F, Class C, and Class B. Each mix was tested with one section being cured with insulation blankets and another section without. All used Type I cement. Iowa Department of Transportation specifications required 500 psi of flexural strength before a pavement can be opened to traffic. The Class F mix with Type I cement and using insulation blankets reached that strength in approximately 36 hours, the Class C mix using the blankets in approximately 48 hours, and the Class F mix without covers in about 60 hours. (Note: Class F concrete pavement is opened at 400 psi minimum and Class F bonded overlay pavement at 350 psi.) The results showed a significant improvement in early strength gain by the use of insulation blankets. The Type I cement could be used in mixes intended for early opening with sacrifices in time when compared to fast track but are still much sooner than conventional pavement. It appears a range of design alternatives is possible using Type I cement both with and without insulating blankets.
Carbonate Rock Pore Size Distribution Determination through Iowa Pore Index Testing, MLR-15-01, 2015
Resumo:
The Iowa Pore Index (IPI) measures the pore system of carbonate (limestone and dolomite) rocks using pressurized water to infiltrate the pore system. This technique provides quantitative results for the primary and capillary (secondary) pores in carbonate rocks. These results are used in conjunction with chemical and mineralogical test results to calculate a quality number, which is used as a predictor of aggregate performance in Portland cement concrete (PCC) leading to the durability classification of the aggregate. This study had two main objectives: to determine the effect different aggregate size has on IPI test results and to establish the precision of IPI test and test apparatus. It was found that smaller aggregate size fractions could be correlated to the standard 1/2”-3/4” size sample. Generally, a particle size decrease was accompanied by a slight decrease in IPI values. The IPI testing also showed fairly good agreement of the secondary pore index number between the 1/2”-3/4”and the 3/8”-1/2” fraction. The #4-3/8” showed a greater difference of the secondary number from the 1/2”-3/4” fraction. The precision of the IPI test was established as a standard deviation (Sr) of 2.85 (Primary) and 0.87 (Secondary) with a repeatability limit (%r) of 8.5% and 14.9% for the primary and secondary values, respectively.