26 resultados para biodiesel exhaust
Resumo:
Pursuant to Iowa Code section 307.20, the biodiesel fuel revolving fund (Fund) was created and is to be used to purchase biodiesel fuel for use in the Department of Transportation's vehicles. The act directed that the Fund receive money from the sale of EPAct credits banked by the DOT on the effective date of the act, moneys appropriated by the General Assembly, and any other moneys obtained or accepted by the DOT for deposit in the Fund. This report is of the expenditures made from the Fund during FY 2012.
Resumo:
Pursuant to Iowa Code section 307.20, the biodiesel fuel revolving fund (Fund) was created and is to be used to purchase biodiesel fuel for use in the Department of Transportation's vehicles. The act directed that the Fund receive money from the sale of EPAct credits banked by the DOT on the effective date of the act, moneys appropriated by the General Assembly, and any other moneys obtained or accepted by the DOT for deposit in the Fund. This report is of the expenditures made from the Fund during FY 2013.
Resumo:
Pursuant to Iowa Code section 307.20, the biodiesel fuel revolving fund (Fund) was created and is to be used to purchase biodiesel fuel for use in the Department of Transportation’s vehicles. The act directed that the Fund receive money from the sale of EPAct credits banked by the DOT on the effective date of the act, moneys appropriated by the General Assembly, and any other monies obtained or accepted by the DOT for deposit in the Fund. This report is of the expenditures made from the Fund during FY 2014.
Resumo:
Pursuant to Iowa Code section 307.20, the biodiesel fuel revolving fund (Fund) was created and is to be used to purchase biodiesel fuel for use in the Department of Transportation’s vehicles. The act directed that the Fund receive money from the sale of EPAct credits banked by the DOT on the effective date of the act, monies appropriated by the General Assembly, and any other monies obtained or accepted by the DOT for deposit in the Fund. This report is of the expenditures made from the Fund during FY 2015.
Resumo:
Projections of U.S. ethanol production and its impacts on planted acreage, crop prices, livestock production and prices, trade, and retail food costs are presented under the assumption that current tax credits and trade policies are maintained. The projections were made using a multi-product, multi-country deterministic partial equilibrium model. The impacts of higher oil prices, a drought combined with an ethanol mandate, and removal of land from the Conservation Reserve Program (CRP) relative to baseline projections are also presented. The results indicate that expanded U.S. ethanol production will cause long-run crop prices to increase. In response to higher feed costs, livestock farmgate prices will increase enough to cover the feed cost increases. Retail meat, egg, and dairy prices will also increase. If oil prices are permanently $10-per-barrel higher than assumed in the baseline projections, U.S. ethanol will expand significantly. The magnitude of the expansion will depend on the future makeup of the U.S. automobile fleet. If sufficient demand for E-85 from flex-fuel vehicles is available, corn-based ethanol production is projected to increase to over 30 billion gallons per year with the higher oil prices. The direct effect of higher feed costs is that U.S. food prices would increase by a minimum of 1.1% over baseline levels. Results of a model of a 1988-type drought combined with a large mandate for continued ethanol production show sharply higher crop prices, a drop in livestock production, and higher food prices. Corn exports would drop significantly, and feed costs would rise. Wheat feed use would rise sharply. Taking additional land out of the CRP would lower crop prices in the short run. But because long-run corn prices are determined by ethanol prices and not by corn acreage, the long-run impacts on commodity prices and food prices of a smaller CRP are modest. Cellulosic ethanol from switchgrass and biodiesel from soybeans do not become economically viable in the Corn Belt under any of the scenarios. This is so because high energy costs that increase the prices of biodiesel and switchgrass ethanol also increase the price of cornbased ethanol. So long as producers can choose between soybeans for biodiesel, switchgrass for ethanol, and corn for ethanol, they will choose to grow corn. Cellulosic ethanol from corn stover does not enter into any scenario because of the high cost of collecting and transporting corn stover over the large distances required to supply a commercial-sized ethanol facility.
Resumo:
The State Government E85 Use Plan was mandated by Culver Executive Order 3 and was required to be submitted to the Governor’s Office December 31, 2007. The plan makes policy recommendations governing the use of E85 fuel by state government, the reporting of E85 fuel sales statewide, and establishes a task force to discuss biodiesel use for state government, local government, and private industry and make recommendations.
Resumo:
As the nation’s leading producer of ethanol and biodiesel, Iowa is building upon its national reputation as an innovative renewable fuel and energy leader by aggressively pursuing more wind energy production. We invite you to take a closer look at Iowa as we harness the winds of renewable energy
Resumo:
The Department identified 2,706 potential retail locations at which motor fuel may be sold. Reporting forms were mailed to 1,675 locations identified using Department of Agriculture and Land Stewardship motor fuel license information and to 305 locations identified through the Department of Revenue motor fuel tax database. In addition, 726 locations were identified for four large motor fuel retailers that submitted their annual sales data electronically. The Department received either forms or electronic files representing 2,324 (85.9%) of the locations. Replies for 115 of the locations indicated that no retail sales of any type of motor fuel were made during 2010. 2,209 locations reported retail motor fuel sales. This report’s primary focus is on biofuel sales. Of the reporting retail locations, 2,075 (93.9%) reported selling E10 blend motor fuel, 165 (7.5%) reported selling the E85 blend motor fuel, and 239 (10.8%) reported selling various blends of biodiesel.
Resumo:
Amana Farms is using an anaerobic digestion, which is a two-stage digester that converts manure and other organic wastes into three valuable by-products: 1) Biogas – to fuel an engine/generator set to create electricity; 2) Biosolids - used as a livestock bedding material or as a soil amendment; 3) Liquid stream - will be applied as a low-odor fertilizer to growing crops. (see Business Plan appendix H) The methane biogas will be collected from the two stages of the anaerobic digestion vessel and used for fuel in the combined heat and power engine/generator sets. The engine/generator sets are natural gasfueled reciprocating engines modified to burn biogas. The electricity produced by the engine/generator sets will be used to offset on-farm power consumption and the excess power will be sold directly to Amana Society Service Company as a source of green power. The waste heat, in the form of hot water, will be collected from both the engine jacket liquid cooling system and from the engine exhaust (air) system. Approximately 30 to 60% of this waste heat will be used to heat the digester. The remaining waste heat will be used to heat other farm buildings and may provide heat for future use for drying corn or biosolids. The digester effluent will be pumped from the effluent pit at the end of the anaerobic digestion vessel to a manure solids separator. The mechanical manure separator will separate the effluent digested waste stream into solid and liquid fractions. The solids will be dewatered to approximately a 35% solid material. Some of the separated solids will be used by the farm for a livestock bedding replacement. The remaining separated solids may be sold to other farms for livestock bedding purposes or sold to after-markets, such as nurseries and composters for soil amendment material. The liquid from the manure separator, now with the majority of the large solids removed, will be pumped into the farm’s storage lagoon. A significant advantage of the effluent from the anaerobic digestion treatment process is that the viscosity of the effluent is such that the liquid effluent can now be pumped through an irrigation nozzle for field spreading.
Resumo:
Snow and ice removal on public streets is a critical part of the work of departments of transportation in northern U.S. states, including Iowa. Iowa is also a state rich in agricultural resources, some of which undergo industrial processes that generate a number of byproducts, e.g., in converting corn to ethanol or soy to biodiesel. It would be desirable to find those that, with a minimum of additional processing, can be used as a deicing compound, either alone or in combination with products currently in use. The focus of this work is therefore to investigate by-products from agricultural processes that may be suitable for use as deicing applications. This topic has been investigated in the past by others, with many patented products described in the literature. An initial screening was carried out to assess the potential acceptability of selected commercial products, as well as a glycerol developed for this project. Based on the variety of parameters tested, the product combination that shows the greatest promise for future application consists of 80% glycerol with 20% NaCl.
Resumo:
The federal government is aggressively promoting biofuels as an answer to global climate change and dependence on imported sources of energy. Iowa has quickly become a leader in the bioeconomy and wind energy production, but meeting the United States Department of Energy’s goal having 20% of U.S. transportation fuels come from biologically based sources by 2030 will require a dramatic increase in ethanol and biodiesel production and distribution. At the same time, much of Iowa’s rural transportation infrastructure is near or beyond its original design life. As Iowa’s rural roadway structures, pavements, and unpaved roadways become structurally deficient or functionally obsolete, public sector maintenance and rehabilitation costs rapidly increase. More importantly, costs to move all farm products will rapidly increase if infrastructure components are allowed to fail; longer hauls, slower turnaround times, and smaller loads result. When these results occur on a large scale, Iowa will start to lose its economic competitive edge in the rapidly developing bioeconomy. The primary objective of this study was to document the current physical and fiscal impacts of Iowa’s existing biofuels and wind power industries. A four-county cluster in north-central Iowa and a two-county cluster in southeast Iowa were identified through a local agency survey as having a large number of diverse facilities and were selected for the traffic and physical impact analysis. The research team investigated the large truck traffic patterns on Iowa’s secondary and local roads from 2002 to 2008 and associated those with the pavement condition and county maintenance expenditures. The impacts were quantified to the extent possible and visualized using geographic information system (GIS) tools. In addition, a traffic and fiscal assessment tool was developed to understand the impact of the development of the biofuels on Iowa’s secondary road system. Recommended changes in public policies relating to the local government and to the administration of those policies included standardizing the reporting and format of all county expenditures, conducting regular pavement evaluations on a county’s system, cooperating and communicating with cities (adjacent to a plant site), considering utilization of tax increment financing (TIF) districts as a short-term tool to produce revenues, and considering alternative ways to tax the industry.