21 resultados para Wear abrasive
Resumo:
The Iowa DOT has been using the "Iowa Method" thin bonded low-slump dense Portland Cement Concrete (PCC) bridge deck overlay for rehabilitation of delaminated decks since 1963. In time, continued use of studded tires will wear away the transverse grooved texture. The objective of this research was to evaluate the benefit of incorporating a hard durable aggregate into a dense PCC overlay to provide frictional property longevity. The project included three overlays on I-35 near Ankeny. The texture and friction properties of two overlays, one constructed with crushed granite and the other with crushed quartzite coarse aggregate, were compared to an overlay constructed with locally available crushed limestone. There were no construction problems resulting from the use of crushed granite or quartzite. There was no significant frictional property benefit from the crushed granite or crushed quartzite through six years.
Resumo:
Cities and counties in Iowa have more than 8,890 steel bridges, most of which are painted with red lead paint. The Iowa Department of Transportation (Iowa DOT) maintains less than 35 bridges coated with red lead paint, including seven of the large border bridges over the Mississippi and Missouri Rivers. Because of the federal and state regulations for bridge painting, many governmental agencies have opted not to repaint, or otherwise maintain, lead paint coatings. Consequently, the paint condition on many of these bridges is poor, and some bridges are experiencing severe rusting of structural members. This research project was developed with two objectives: 1) to evaluate the effectiveness of preparing the structural steel surface of a bridge with high pressure water jetting instead of abrasive blasting and 2) to coat the structural steel surface with a moisture-cured polyurethane paint under different surface preparation conditions.
Resumo:
Important qualities of aggregates used for thin maintenance surface (TMS) include an aggregates wear and skid resistance, shape, gradation, and size. The wear and skid resistance of an aggregate influences the lifetime of the individual aggregate particles, and thus the lifetime of the TMS. A TMS’s effectiveness is impacted by the shape, gradation, and size of the aggregate used for the surfacing material along with the lifetime of the aggregate.
Resumo:
Soil consolidation and erosion caused by roadway runoff have exposed the upper portions of steel piles at the abutments of numerous bridges, leaving them susceptible to accelerated corrosion rates due to the abundance of moisture, oxygen, and chlorides at these locations. This problem is compounded by the relative inaccessibility of abutment piles for close-up inspection and repair. The objective of this study was to provide bridge owners with recommendations for effective methods of addressing corrosion of steel abutment piles in existing and future bridges A review of available literature on the performance and protection of steel piles exposed to a variety of environments was performed. Eight potential coating systems for use in protecting existing and/or new piles were selected and subjected to accelerated corrosion conditions in the laboratory. Two surface preparation methods were evaluated in the field and three coating systems were installed on three piles at an existing bridge where abutment piles had been exposed by erosion. In addition, a passive cathodic protection (CP) system using sacrificial zinc anodes was tested in the laboratory. Several trial flowable mortar mixes were evaluated for use in conjunction with the CP system. For existing abutment piles, application of a protective coating system is a promising method of mitigating corrosion. Based on its excellent performance in accelerated corrosion conditions in the laboratory on steel test specimens with SSPC-SP3, -SP6, and -SP10 surface preparations, glass flake polyester is recommended for use on existing piles. An alternative is epoxy over organic zinc rich primer. Surface preparation of existing piles should include abrasive blast cleaning to SSPC-SP6. Although additional field testing is needed, based on the results of the laboratory testing, a passive CP system could provide an effective means of protecting piles in existing bridges when combined with a pumped mortar used to fill voids between the abutment footing and soil. The addition of a corrosion inhibitor to the mortar appears to be beneficial. For new construction, shop application of thermally sprayed aluminum or glass flake polyester to the upper portion of the piles is recommended.
Resumo:
This report contains an estimate of the cost of highway resurfacing necessitated by damage from studded tires. The total is $95,620,000 for the twenty-five years from 1971 to 1996. This total includes $51,937,000 to resurface pavements and bridges on Interstate routes and $43,683,000 for other Primary highways. The estimate for Interstate routes includes those sections now open to traffic and those planned for completion by November 1974. The estimate for other Primary routes includes rural and municipal sections open to traffic as of November 1970. The estimate was prepared by computing the cost of expected pavement and bridge resurfacing costs for the twenty-five year period assuming continued use of studded tires, then subtracting from this the expected resurfacing ) cost for the same period assuming that the use of' studded tires is prohibited. The total figure, $95,620,000, should be regarded as a conservative estimate of the cost which may be avoided by prohibiting the use of studded tires in Iowa. The conservative nature of the estimate may be demonstrated by the following examples of the guidelines used iri its preparation. 1. Only mainline pavements were included in the cost estimate for the Interstate routes. The connecting loops, exit ramps and entrance ramps at Interstate interchanges contain many additional miles of pavement subject to wear by studded tires. This pavement was omitted from the estimate because reliable ' information about the rate of pavement wear at such locations is not available. As a result, the Interstate resurfacing costs are underestimated. 2. Several other costs were also omitted from the estimate because of a lack of sufficient information. These include the cost of repairing damage caused by studded tires to city streets other than those designated as Primary routes, the damage to pavements and bridges on the more-heavily travelled Secondary roads, and the damage to pavement traffic markings on all highway systems. Experience indicates that portland cement concrete pavements in Iowa have a normal service life of twenty-five years before resurfacing becomes necessary. The service life for asphalt pavements is thirteen years. In making this cost estimate, the need for resurfacing was attributed to wear from studded tires only when the normal service life of the pavement was shortened by that wear. Consequently, this cost estimate does not account for the reduced safety and convenience to Iowa motorists during the time when pavement wear caused by studded tires is significant but less than the critical amount.
Resumo:
Many specifications for coarse aggregates, that are to be used in highway construction, limit the percentage of wear when tested by AASHO T-96 "Resistance to Abrasion of Coarse Aggregate by use of the Los Angeles Machine". This test consists of placing a 5000 gram sample of the aggregate in a "hollow steel cylinder, closed at both ends, having an inside diameter of 28 inches and an inside length of 20 inches. The cylinder - - - shall be mounted in such a manner that it may be rotated with the axis in a horizontal position. - A removable steel shelf, projecting radially 3-1/2 inches into the cylinder and extending its full length, shall be mounted along one element of the interior surface of the cylinder."