21 resultados para Self Ordered Tasks
Resumo:
The Iowa State Capitol: A Self-Guided Tour
Resumo:
Culverts are common means to convey flow through the roadway system for small streams. In general, larger flows and road embankment heights entail the use of multibarrel culverts (a.k.a. multi-box) culverts. Box culverts are generally designed to handle events with a 50-year return period, and therefore convey considerably lower flows much of the time. While there are no issues with conveying high flows, many multi-box culverts in Iowa pose a significant problem related to sedimentation. The highly erosive Iowa soils can easily lead to the situation that some of the barrels can silt-in early after their construction, becoming partially filled with sediment in few years. Silting can reduce considerably the capacity of the culvert to handle larger flow events. Phase I of this Iowa Highway Research Board project (TR-545) led to an innovative solution for preventing sedimentation. The solution was comprehensively investigated through laboratory experiments and numerical modeling aimed at screening design alternatives and testing their hydraulic and sediment conveyance performance. Following this study phase, the Technical Advisory Committee suggested to implement the recommended sediment mitigation design to a field site. The site selected for implementation was a 3-box culvert crossing Willow Creek on IA Hwy 1W in Iowa City. The culvert was constructed in 1981 and the first cleanup was needed in 2000. Phase II of the TR 545 entailed the monitoring of the site with and without the selfcleaning sedimentation structure in place (similarly with the study conducted in laboratory). The first monitoring stage (Sept 2010 to December 2012) was aimed at providing a baseline for the operation of the as-designed culvert. In order to support Phase II research, a cleanup of the IA Hwy 1W culvert was conducted in September 2011. Subsequently, a monitoring program was initiated to document the sedimentation produced by individual and multiple storms propagating through the culvert. The first two years of monitoring showed inception of the sedimentation in the first spring following the cleanup. Sedimentation continued to increase throughout the monitoring program following the depositional patterns observed in the laboratory tests and those documented in the pre-cleaning surveys. The second part of Phase II of the study was aimed at monitoring the constructed self-cleaning structure. Since its construction in December 2012, the culvert site was continuously monitored through systematic observations. The evidence garnered in this phase of the study demonstrates the good performance of the self-cleaning structure in mitigating the sediment deposition at culverts. Besides their beneficial role in sediment mitigation, the designed self-cleaning structures maintain a clean and clear area upstream the culvert, keep a healthy flow through the central barrel offering hydraulic and aquatic habitat similar with that in the undisturbed stream reaches upstream and downstream the culvert. It can be concluded that the proposed self-cleaning structural solution “streamlines” the area upstream the culvert in a way that secures the safety of the culvert structure at high flows while producing much less disturbance in the stream behavior compared with the current constructive approaches.
Resumo:
This publication is a 10-step audit for employers to see if they are paying their female employees as much as their male employees
Resumo:
The Self Instructional Math course book is designed to provide a basic math knowledge for those involved in the planning, design, and construction of highways. It was developed in a manner to allow the student to take the course with minimal supervision and at times that the work schedule allows. The first version of the course was developed in the early 1970's and due to its popularity was revised in the early 1990's to reflect changes in the highway construction math needs. The anticipated move to metric (System International) measurements by the highway industry has necessitated the need to change the math course problem values to metric units. The course includes the latest in Iowa DOT policy information relative to the selection and use of metric values for highway design, and construction. Each unit of the book contains instructional information, section quizzes and a comprehensive examination. All problem values are expressed in metric rather than dual (english and SI) units. The appendix contains useful conversion factors to assist the reader in making the change to metric.
Resumo:
This report synthesizes the safety corridor programs of 13 states that currently have some type of program: Alaska, California, Florida, Kentucky, Minnesota, New Jersey, New Mexico, New York, Ohio, Oregon, Pennsylvania, Virginia, and Washington. This synthesis can help Midwestern states implement their own safety corridor programs and select pilot corridors or enhance existing corridors. Survey and interview information about the states’ programs was gathered from members of each state department of transportation (DOT) and Federal Highway Administration (FHWA) division office. Topics discussed included definitions of a safety corridor; length and number of corridors in the program; criteria for selection of a corridor; measures of effectiveness of an implemented safety corridor; organizational structure of the program; funding and legislation issues; and engineering, education, enforcement, and emergency medical service strategies. Safety corridor programs with successful results were then examined in more detail, and field visits were made to Kansas, Oregon, Pennsylvania, and Washington for first-hand observations. With the survey and field visit information, several characteristics of successful safety corridor programs were identified, including multidisciplinary (3E and 4E) efforts; selection, evaluation, and decommissioning strategies; organization structure, champions, and funding; task forces and Corridor Safety Action Plans; road safety audits; and legislation and other safety issues. Based on the synthesis, the report makes recommendations for establishing and maintaining a successful safety corridor program.
Resumo:
Over-consolidation is often visible as longitudinal vibrator trails in the surface of concrete pavements constructed using slip-form paving. Concrete research and practice have shown that concrete material selection and mix design can be tailored to provide a good compaction without the need for vibration. However, a challenge in developing self-consolidating concrete for slip-form paving (SF SCC) is that the new SF SCC needs to possess not only excellent self-compactibility and stability before extrusion, but also sufficient “green” strength after extrusion, while the concrete is still in a plastic state. The SF SCC to be developed will not be as fluid as the conventional SCC, but it will (1) be workable enough for machine placement, (2) be self-compacting with minimum segregation, (3) hold shape after extrusion from a paver, and (4) have performance properties (strength and durability) compatible to current pavement concrete. The overall objective of this project is to develop a new type of SCC for slip-form paving to produce more workable concrete and smoother pavements, better consolidation of the plastic concrete, and higher rates of production. Phase I demonstrated the feasibility of designing a new type of SF SCC that can not only self-consolidate, but also have sufficient green strength. In this phase, a good balance between flowability and shape stability was achieved by adopting and modifying the mix design of self-consolidating concrete to provide a high content of fine materials in the fresh concrete. It was shown that both the addition of fine particles and the modification of the type of plasticizer significantly improve fresh concrete flowability. The mixes used in this phase were also found to have very good shape stability in the fresh state. Phase II will focus on developing a SF SCC mix design in the lab and a performing a trial of the SF SCC in the field. Phase III will include field study, performance monitoring, and technology transfer.