19 resultados para SURFACE CONTAMINANT REMOVAL
Resumo:
One of the more severe winter hazards is ice or compacted snow on roadways. While three methods are typically used to combat ice (salting, sanding and scraping), relatively little effort has been applied to improve methods of scraping ice from roads. In this project, a new test facility has been developed, comprising a truck with an underbody blade, which has been instrumented such that the forces to scrape ice from a pavement can be measured. A test site has been used, which is not accessible to the public, and ice covers have been sprayed onto the pavement and subsequently scraped from it, while the scraping loads have been recorded. Three different cutting edges have been tested for their ice scraping efficiency. Two of the blades are standard (one with a carbide insert, the other without) while the third blade was designed under the SHRP H-204A project. Results from the tests allowed two parameters to be identified. The first is the scraping efficiency which is the ratio of vertical to horizontal force. The lower this ratio, the more efficiently ice is being removed. The second parameter is the scraping effectiveness, which is related (in some as yet unspecified manner) to the horizontal load. The higher the horizontal load, the more ice is being scraped. The ideal case is thus to have as high a horizontal load as possible, combined with the lowest possible vertical load. Results indicate that the SHRP blade removed ice more effectively than the other two blades under equivalent conditions, and furthermore, did so with greater efficiency and thus more control. Furthermore, blade angles close to 0 deg provide for the most efficient scraping for all three blades. The study has shown that field testing of plow blades is possible in controlled situations, and that blades can be evaluated using this system. The system is available for further tests as are deemed appropriate.
Resumo:
Research project HR-231, "Special Surface Preparation Prior to Bituminous Overlay", was initiated in 1982 to study the effectiveness of three different crack fillers in extending pavement life. In particular, this project was designed to determine if any of the fillers could substantially reduce the rate of subsurface deterioration and general deterioration of an asphalt pavement at crack locations. This project also sought to determine the effects of the various crack filling procedures on different thicknesses of bituminous overlays. The three fillers, a fly ash slurry, an emulsion, and a rubberized asphalt mixture, were used along with a control section with no crack filler material on a 2.5 mile section of Cerro Gordo Trunk Route S-25 south of the town of Thornton. This report discusses the construction and performance of each filler material and makes recommendations concerning future use of any of the materials used.
Resumo:
Snow removal on the 90,000 mile Iowa secondary road system is a major concern of county engineers. Rural residents rely almost entirely on motor vehicles for travel. They have come to expect passable roads during all types of weather and as most county engineers know, the public is less tolerant of problems in snow removal than in any other highway department function. To avoid snow removal problems, maintenance personnel begin preparation before the winter maintenance season. The slide tape presentation, "Snow Removal on Iowa's Secondary Roads", was developed to assist in training and retraining maintenance personnel each year prior to winter. The program covers preparation for winter, snow and ice removal, and after storm care of equipment.
Resumo:
Research is reported which attempted to identify construction procedures that will provide an improved centerline joint on asphalt concrete pavements. Various construction procedures and their evaluation are described. Core densities were made and visual inspections were made 3 years after construction. Center cracking was measured at 4, 5, and 6 years. The only procedure to rank the same when comparing cracking and density (delete the 1:1 slope shoe on the edge) is described. This procedure had the highest average density and also the least cracking through 1985. This method provided the best performance for 4 years after construction and involved the removal of the 1:1 slope shoe from the paver when placing the surface course. This method had 9.0% cracked after 4 years and 100% cracked after 6 years of service.