23 resultados para STRENGTHENING
Resumo:
Recent data compiled by the National Bridge Inventory revealed 29% of Iowa's approximate 24,600 bridges were either structurally deficient or functionally obsolete. This large number of deficient bridges and the high cost of needed repairs create unique problems for Iowa and many other states. The research objective of this project was to determine the load capacity of a particular type of deteriorating bridge – the precast concrete deck bridge – which is commonly found on Iowa's secondary roads. The number of these precast concrete structures requiring load postings and/or replacement can be significantly reduced if the deteriorated structures are found to have adequate load capacity or can be reliably evaluated. Approximately 600 precast concrete deck bridges (PCDBs) exist in Iowa. A typical PCDB span is 19 to 36 ft long and consists of eight to ten simply supported precast panels. Bolts and either a pipe shear key or a grouted shear key are used to join adjacent panels. The panels resemble a steel channel in cross-section; the web is orientated horizontally and forms the roadway deck and the legs act as shallow beams. The primary longitudinal reinforcing steel bundled in each of the legs frequently corrodes and causes longitudinal cracks in the concrete and spalling. The research team performed service load tests on four deteriorated PCDBs; two with shear keys in place and two without. Conventional strain gages were used to measure strains in both the steel and concrete, and transducers were used to measure vertical deflections. Based on the field results, it was determined that these bridges have sufficient lateral load distribution and adequate strength when shear keys are properly installed between adjacent panels. The measured lateral load distribution factors are larger than AASHTO values when shear keys were not installed. Since some of the reinforcement had hooks, deterioration of the reinforcement has a minimal affect on the service level performance of the bridges when there is minimal loss of cross-sectional area. Laboratory tests were performed on the PCDB panels obtained from three bridge replacement projects. Twelve deteriorated panels were loaded to failure in a four point bending arrangement. Although the panels had significant deflections prior to failure, the experimental capacity of eleven panels exceeded the theoretical capacity. Experimental capacity of the twelfth panel, an extremely distressed panel, was only slightly below the theoretical capacity. Service tests and an ultimate strength test were performed on a laboratory bridge model consisting of four joined panels to determine the effect of various shear connection configurations. These data were used to validate a PCDB finite element model that can provide more accurate live load distribution factors for use in rating calculations. Finally, a strengthening system was developed and tested for use in situations where one or more panels of an existing PCDB need strengthening.
Resumo:
Many cities in Iowa have retained the original brick street surfaces in downtown areas and in older residential areas as the base for modern driving surfaces. The original brick surfaces were not built to handle current and future traffic loadings. In recent years, these surfaces have tended to shift and become uneven, creating problems with safety. Asphaltic concrete overlays have been the typical rehabilitation technique in these situations. This has proven to be a successful rehabilitation technique in some cases; in other cases, the combination of movement of the brick and flexibility of the asphalt has proven to accentuate the original problems. Most of the existing literature on rehabilitation of brick streets shows the use of asphaltic concrete. Other rehabilitation methods include reconstruction of the brick surface and strengthening of the surface by placing asphaltic concrete or portland cement concrete, along with sand, underneath the brick layers. To date, little if anything has been done in the area of using portland cement concrete as an overlay of the brick surfaces. This final report documents the planning, construction, and performance of unbonded ultrathin whitetopping rehabilitation of a brick street in Oskaloosa, Iowa, in 2001. It also reports on a similar project in Des Moines that was constructed two years later in 2003.
Resumo:
Based on previous National Bridge Inventory data, the state of Iowa has nearly 20,000 bridges on low-volume roads (LVRs). Thus, these bridges are the responsibility of the county engineers. Of the bridges on the county roads, 24 percent are structurally deficient and 5 percent are functionally obsolete. A large number of the older bridges on the LVRs are built on timber piling with timber back walls. In many cases, as timber abutments and piers age, the piling and back wall planks deteriorate at a rate faster than the bridge superstructure. As a result, a large percentage of the structurally deficient bridges on LVRs are classified as such because of the condition of the timber substructure elements. As funds for replacing bridges decline and construction costs increase, effective rehabilitation and strengthening techniques for extending the life of the timber substructures in bridges with structurally sound superstructures has become even more important. Several counties have implemented various techniques to strengthen/repair damaged piling, however, there is minimal data documenting the effectiveness of these techniques. There are numerous instances where cracked and failed pilings have been repaired. However, there are no experimental data on the effectiveness of the repairs or on the percentage of load transferred from the superstructure to the sound pile below. To address the research needs, a review and evaluation of current maintenance and rehabilitation methods was completed. Additionally, a nationwide survey was conducted to learn the methods used beyond Iowa. Field investigation and live-load testing of bridges with certain Iowa methods was completed. Lastly, laboratory testing of new strengthening and rehabilitation methods was performed.
Resumo:
Many state, county, and local agencies are faced with deteriorating bridge infrastructure composed of a large percentage of relatively short to medium span bridges. In many cases, these older structures are rolled or welded longitudinal steel stringers acting compositely with a reinforced concrete deck. Most of these bridges, although still in service, need some level of strengthening due to increases in legal live loads or loss of capacity due to deterioration. Although these bridges are overstressed in most instances, they do not warrant replacement; thus, structurally efficient but cost-effective means of strengthening needs to be employed. In the past, the use of bolted steel cover plates or angles was a common retrofit option for strengthening such bridges. However, the time and labor involved to attach such a strengthening system can sometimes be prohibitive. This project was funded through the Federal Highway Administration’s Innovative Bridge Research and Construction program. The goal is to retrofit an existing structurally deficient, three-span continuous steel stringer bridge using an innovative technique that involves the application of post-tensioning forces; the post-tensioning forces were applied using fiber reinforced polymer post-tensioning bars. When compared to other strengthening methods, the use of carbon fiber reinforced polymer composite materials is very appealing in that they are highly resistant to corrosion, have a low weight, and have a high tensile strength. Before the post-tensioning system was installed, a diagnostic load test was conducted on the subject bridge to establish a baseline behavior of the unstrengthened bridge. During the process of installing the post-tensioning hardware and stressing the system, both the bridge and the post-tensioning system were monitored. The installation of the hardware was followed by a follow-up diagnostic load test to assess the effectiveness of the post-tensioning strengthening system. Additional load tests were performed over a period of two years to identify any changes in the strengthening system with time. Laboratory testing of several typical carbon fiber reinforced polymer bar specimens was also conducted to more thoroughly understand their behavior. This report documents the design, installation, and field testing of the strengthening system and bridge.
Resumo:
This analysis examined data from a variety of sources to estimate the benefit of enhancing Iowa’s current law to require all passengers to use seat belts. In addition to assessing Iowans’ opinions about changing the law, a literature review, a legislative policy review, and analysis of Iowa crash data were completed. Currently 28 states enforce seat belt laws for all passengers. Belted passengers riding with an unbelted passenger are 2 to 5 times more likely to suffer fatal injuries in a crash relative to when all occupants are using seat belts. Iowans are highly compliant (90%-94%) with the current seat belt law for front seat occupants. Of more than 1000 Iowans surveyed, 85% said they always use a seat belt when riding in the front seat, but only 36% always do so when they ride in the back seat. The most common reasons given for not using seat belts in the back seat are forgetting to buckle up and because it is not the law. Iowans widely support strengthening Iowa’s seat belt law — 62% said Iowa law should require all rear seat passengers to use seat belts. Four out of five respondents said they would use seat belts more often when sitting in the rear seat if it was the law. It is estimated rear seat fatalities would decrease about 48%, from 13 to 7 fatalities annually, if an all-passenger law was implemented in Iowa.
Resumo:
Section 30 of Senate File 2239 mandates “the Department on Aging, Department of Human Services, Department of Inspections and Appeals, Department of Public Health, and the Office of the Attorney General shall collaborate and provide written recommendations on strengthening Iowa’s elder abuse prevention, detection, and intervention efforts.
Resumo:
Many cities in Iowa have retained the original brick street surfaces in downtown areas and in older residential areas as the base for modern driving surfaces. The original brick surfaces were not built to handle current and future traffic loadings. In recent years, these surfaces have tended to shift and become uneven, creating problems with safety. Asphaltic concrete overlays have been the typical rehabilitation technique in these situations. This has proven to be a successful rehabilitation technique in some cases; in other cases, the combination of movement of the brick and flexibility of the asphalt has proven to accentuate the original problems. Most of the existing literature on rehabilitation of brick streets shows the use of asphaltic concrete. Other rehabilitation methods include reconstruction of the brick surface and strengthening of the surface by placing asphaltic concrete or portland cement concrete, along with sand, underneath the brick layers. To date, little if anything has been done in the area of using portland cement concrete as an overlay of the brick surfaces. This final report documents the planning, construction, and performance of unbonded ultrathin whitetopping rehabilitation of a brick street in Oskaloosa, Iowa, in 2001. It also reports on a similar project in Des Moines that was constructed two years later in 2003.
Resumo:
The Iowa Department of Public Health (IDPH) convened the Health and Long-Term Care Advisory Council (HLTCAC) to assist in the development of its strategic plan. One component of the strategic plan is a rural health care resource plan. The intent of this document is to present reliable information and data as a valuable resource for the officials, agencies, and organizations responsible for strengthening and supporting the rural health systems vital to 43 percent of Iowa residents.