58 resultados para Reinforcing bars


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fiber reinforced polymer (FRP) composite materials are making an entry into the construction market in both buildings and pavements. The application to pavements so far has come in the form of joint reinforcement (dowels and tie bars). FRP resistance to salt corrosion in dowels has made it an alternative to standard epoxy-coated steel dowels for pavements. Iowa State University has completed a large amount of laboratory research to determine the diameter, spacing, and durability of FRP dowels. This report documents the performance of elliptical FRP dowels installed in a field situation. Ten joints were monitored in three consecutive test sections, for each of three dowel spacings (10, 12, and 15 inches) including one instrumented dowel in each test section. The modulus of dowel bar support was determined using falling weight deflectometer (FWD) testing and a loaded crawl truck. FWD testing was also used to determine load transfer efficiency across the joint. The long-term performance and durability of the concrete was also evaluated by monitoring faulting and joint opening measurements and performing visual distress surveys at each joint. This report also contains similar information for standard round, medium elliptical, and heavy elliptical steel dowels in a portion of the same highway. In addition, this report provides a summary of theoretical analysis used to evaluate joint differential deflection for the dowels.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This report presents the latest technological gaps in dowel bar research based upon completed and ongoing dowel bar research from across the nation. In order to obtain this collection of information about dowel bars, a search was conducted on a nationwide level. The technological gaps and duplications of the research were then determined. In addition, this report also provides a brief annotated bibliography of all sources used to determine the gaps in technology and knowledge for dowel bar and alternative dowel bar topics as applied to highway pavements.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

America’s roadways are in serious need of repair. According to the American Society of Civil Engineers (ASCE), one-third of the nation’s roads are in poor or mediocre condition (1). ASCE has estimated that under these circumstances American drivers will sacrifice $5.8 billion and as many as 13,800 fatalities a year from 1999 to 2001 ( 1). A large factor in the deterioration of these roads is a result of how well the steel reinforcement transfers loads across the concrete slabs. Fabricating this reinforcement using a shape conducive to transferring these loads will help to aid in minimizing roadway damage. Load transfer within a series of concrete slabs takes place across the joints. For a typical concrete paved road, these joints are approximately 1/8-inch gaps between two adjacent slabs. Dowel bars are located at these joints and used to transfer load from one slab to its adjacent slabs. As long as the dowel bar is completely surrounded by concrete no problems will occur. However, when the hole starts to oblong a void space is created and difficulties can arise. This void space is formed due to a stress concentration where the dowel contacts the concrete. Over time, the repeated process of traffic traveling over the joint crushes the concrete surrounding the dowel bar and causes a void in the concrete. This void inhibits the dowel’s ability to effectively transfer load across the joint. Furthermore, this void gives water and other particles a place to collect that will eventually corrode and potentially bind or lock the joint so that no thermal expansion is allowed. Once there is no longer load transferred across the joint, the load is transferred to the foundation and differential settlement of the adjacent slabs will occur.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fiber composite materials (FRP) are making an entry into the construction market in both buildings and pavements. The application to pavements comes in the form of joint reinforcement (dowels and tie bars) to date. FRP resistance to salt corrosion in dowels has made it an alternative to standard epoxy coated dowels for pavements. Iowa State University has completed a large amount of laboratory research into the determination of diameter, spacing, and durability of FRP dowels. This report documents the installation of a series of FRP elliptical-shaped dowel joints (including instrumented units) in a field situation and the beginning of a two-year study to compare laboratory results to in-service pavements. Ten joints were constructed for each of three dowel spacings of 10, 12, and 15 inches ( 254, 305, and 381 mm) with one instrumented joint in each test section. The instrumented bars will be load tested with a loaded truck and FWD testing.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

General principles • Everyone at the construction site, particularly foremen and supervisors, is responsible for recognizing and troubleshooting potential problems as they arise. • Batches of concrete should be consistent and uniformly mixed. • A major cause of pavement failure is unstable subgrade. The subgrade should consist of uniform material, and the subgrade system must drain well. • Dowel bars are important for load transfer at transverse joints on pavements with high truck volumes. Dowels must be carefully aligned, horizontally and vertically, to prevent pavement damage at the joints. • Stringlines control the slipform paver’s horizontal and vertical movement and ensure a smooth pavement profile. Once stringlines are set, they should be checked often and not disturbed. • Overfinishing the new pavement and/or adding water to the surface can lead to pavement surface problems. If the concrete isn’t sufficiently workable, crews should contact the project manager. Changes to the mixture or to paver equipment may reduce the problem. • Proper curing is critical to preventing pavement damage from rapid moisture loss at the pavement surface. • A well spaced and constructed system of joints is critical to prevent random cracking. • Joints are simply controlled cracks. They must be sawed during the brief time after the pavement has gained enough strength to prevent raveling but before it begins to crack randomly (the “sawing window”). • Seasonal and daily weather variations affect setting time and other variables in new concrete. Construction operations should be adjusted appropriately.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

For people with disabilities, however, housing options have been limited. Today, state and federal laws are changing this. Who will benefit? All of us. For “accessibility” is an issue that, at one time or another, affects us all. This is true whether _ temporarily or permanently _ we use wheelchairs, need grab bars, cannot climb stairs, require easy-to-reach shelves, or rely on easy-to-navigate living spaces. The primary purpose of accessible housing law is to prevent discrimination against people with disabilities, but the end result is a living environment that is more usable for everyone. For example, both the very young and the very old will find an accessible dwelling more comfortable. People with temporary limitations due to injury or illness will find it easier to live in. Such a home will be more welcoming to guests with disabilities.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

For people with disabilities, however, housing options have been limited. Today, state and federal laws are changing this. Who will benefit? All of us. For “accessibility” is an issue that, at one time or another, affects us all. This is true whether _ temporarily or permanently _ we use wheelchairs, need grab bars, cannot climb stairs, require easy-to-reach shelves, or rely on easy-to-navigate living spaces. The primary purpose of accessible housing law is to prevent discrimination against people with disabilities, but the end result is a living environment that is more usable for everyone. For example, both the very young and the very old will find an accessible dwelling more comfortable. People with temporary limitations due to injury or illness will find it easier to live in. Such a home will be more welcoming to guests with disabilities.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The main goal of the research described in this report was to evaluate countermeasures that agencies can use to reduce speeds as drivers enter rural communities located on high-speed roadways. The objectives of this study were as follows: * Identify and summarize countermeasures used to manage speeds in transition zones * Demonstrate the effectiveness of countermeasures that are practical for high- to low-speed transition zones * Acquire additional information about countermeasures that may show promise but lack sufficient evidence of effectiveness * Develop an application toolbox to assist small communities in selecting appropriate transition zones and effective countermeasures for entrances to small rural communities The team solicited small communities that were interested in participating in the Phase II study and several communities were also recommended. The treatments evaluated were selected by carefully considering traffic-calming treatments that have been used effectively in other countries for small rural communities, as well as the information gained from the first phase of the project. The treatments evaluated are as follows: * Transverse speed bars * Colored entrance treatment * Temporary island * Radar-activated speed limit sign * Speed feedback sign The toolbox publication and four focused tech briefs also cover the results of this work.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

"Technical challenges exist with infrastructure that can be addressed by nondestructive evaluation (NDE) methods, such as detecting corrosion damage to reinforcing steel that anchor concrete bridge railings to bridge road decks. Moisture and chloride ions reach the anchors along the cold joint between the rails and deck, causing corrosion that weakens the anchors and ultimately the barriers. The Center for Nondestructive Evaluation at Iowa State University has experience in development of measurement techniques and new sensors using a variety of interrogating energies. This research evaluated feasibility of three technologies — x-ray radiation, ground-penetrating radar (GPR), and magnetic flux leakage (MFL) — for detection and quantification of corrosion of embedded reinforcing steel. Controlled samples containing pristine reinforcing steel with and without epoxy and reinforcing steel with 25 percent and 50 percent section reduction were embedded in concrete at 2.5 in. deep for laboratory evaluation. Two of the techniques, GPR and MFL, were used in a limited field test on the Iowa Highway 210 Bridge over Interstate 35 in Story County. The methods provide useful and complementary information. GPR provides a rapid approach to identify reinforcing steel that has anomalous responses. MFL provides similar detection responses but could be optimized to provide more quantitative correlation to actual condition. Full implementation could use either GPR or MFL methods to identify areas of concern, followed by radiography to give a visual image of the actual condition, providing the final guidance for maintenance actions." The full 103 page report and the 2 page Tech Transfer Summary are included in this link.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The primary objective of this toolbox is to summarize various known traffic-calming treatments and their effectiveness. This toolbox focuses on roadway-based treatments for speed management, particularly for rural communities with transition zones. Education, enforcement, and policy strategies should also be considered, but are not the focus of this toolbox. The research team identified treatments based on their own research, a review of the literature, and discussion with other professionals. This toolbox describes each treatment and summarizes placement, advantages, disadvantages, effectiveness, appropriateness, and cost for each treatment. The categories of treatments covered in this toolbox are as follows: horizontal physical displacement, vertical physical displacement, narrowing, surroundings, pavement markings, traffic control signs, and other strategies. Separate 3- to 4-page Tech Briefs for various aspects of this toolbox are attached to this record: Center Islands with Raised Curbing for Rural Traffic Calming, Colored Entrance Treatments for Rural Traffic Calming, Dynamic Speed Feedback Signs for Rural Traffic Calming, Transverse Speed Bars for Rural Traffic Calming. This toolbox and the tech briefs are related to the report Evaluation of Low Cost Traffic Calming for Rural Communities – Phase II, which is also included in this record or can be found at http://publications.iowa.gov/id/eprint/14769

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The main goal of the research described in this report was to evaluate countermeasures that agencies can use to reduce speeds as drivers enter rural communities located on high-speed roadways. The objectives of this study were as follows: * Identify and summarize countermeasures used to manage speeds in transition zones * Demonstrate the effectiveness of countermeasures that are practical for high- to low-speed transition zones * Acquire additional information about countermeasures that may show promise but lack sufficient evidence of effectiveness * Develop an application toolbox to assist small communities in selecting appropriate transition zones and effective countermeasures for entrances to small rural communities The team solicited small communities that were interested in participating in the Phase II study and several communities were also recommended. The treatments evaluated were selected by carefully considering traffic-calming treatments that have been used effectively in other countries for small rural communities, as well as the information gained from the first phase of the project. The treatments evaluated are as follows: * Transverse speed bars * Colored entrance treatment * Temporary island * Radar-activated speed limit sign * Speed feedback sign The toolbox publication and four focused tech briefs also cover the results of this work.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A double mat of reinforcement steel consisting of No. 5 bars was placed in the longitudinal and transverse directions in a 26' wide, 10" thick pavement. The bars were placed on 12" centers with 2" of cover from the top and bottom surfaces. The special reinforcement is to provide additional strength in the pavement over an area of old coal mine tunnels. Auxiliary and standard paver vibrators were used to consolidate the concrete. There was concern that over-vibration could be occurring in some areas and also that a lack of consolidation may be occurring under the steel bars in some areas. A core evaluation study of the pavement was developed. The results showed that the consolidation and the air contents were satisfactory. Additional paving with reinforcement in the same area should use the same or similar method and amount of vibration as was used in the area evaluated in this study.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The unifying objective of Phases I and II of this study was to determine the feasibility of the post-tensioning strengthening method and to implement the technique on two composite bridges in Iowa. Following completion of these two phases, Phase III was undertaken and is documented in this report. The basic objectives of Phase III were further monitoring bridge behavior (both during and after post-tensioning) and developing a practical design methodology for designing the strengthening system under investigation. Specific objectives were: to develop strain and force transducers to facilitate the collection of field data; to investigate further the existence and effects of the end restraint on the post-tensioning process; to determine the amount of post-tensioning force loss that occurred during the time between the initial testing and the retesting of the existing bridges; to determine the significance of any temporary temperature-induced post-tensioning force change; and to develop a simplified design methodology that would incorporate various variables such as span length, angle-of-skew, beam spacing, and concrete strength. Experimental field results obtained during Phases II and III were compared to the theoretical results and to each other. Conclusions from this research are as follows: (1) Strengthening single-span composite bridges by post-tensioning is a viable, economical strengthening technique. (2) Behavior of both bridges was similar to the behavior observed from the bridges during field tests conducted under Phase II. (3) The strain transducers were very accurate at measuring mid-span strain. (4) The force transducers gave excellent results under laboratory conditions, but were found to be less effective when used in actual bridge tests. (5) Loss of post-tensioning force due to temperature effects in any particular steel beam post-tensioning tendon system were found to be small. (6) Loss of post-tensioning force over a two-year period was minimal. (7) Significant end restraint was measured in both bridges, caused primarily by reinforcing steel being continuous from the deck into the abutments. This end restraint reduced the effectiveness of the post-tensioning but also reduced midspan strains due to truck loadings. (8) The SAP IV finite element model is capable of accurately modeling the behavior of a post-tensioned bridge, if guardrails and end restraints are included in the model. (9) Post-tensioning distribution should be separated into distributions for the axial force and moment components of an eccentric post-tensioning force. (10) Skews of 45 deg or less have a minor influence on post-tensioning distribution. (11) For typical Iowa three-beam and four-beam composite bridges, simple regression-derived formulas for force and moment fractions can be used to estimate post-tensioning distribution at midspan. At other locations, a simple linear interpolation gives approximately correct results. (12) A simple analytical model can accurately estimate the flexural strength of an isolated post-tensioned composite beam.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The feasibility of substituting fibercomposite (FC) (thermoset) pavement dowels for steel pavement dowels was investigated in this research project. Load transfer capacity, flexural capacity, and material properties were examined. The objectives of Part 1 of this final report included the shear behavior and strength deformations of FC dowel bars without aging. Part 2 will contain the aging effects. This model included the effects of modulus of elasticity for the pavement dowel and concrete, dowel diameter, subgrade stiffness, and concrete compressive strength. An experimental investigation was carried out to establish the modulus of dowel support which is an important parameter for the analysis of dowels. The experimental investigation included measured deflections, observed behavioral characteristics, and failure mode observations. An extensive study was performed on various shear testing procedures. A modified Iosipescu shear method was selected for the test procedure. Also, a special test frame was designed and fabricated for this procedure. The experimental values of modulus of support for shear and FC dowels were used for arriving at the critical stresses and deflections for the theoretical model developed. Different theoretical methods based on analyses suggested by Timoshenko, Friberg, Bradbury, and Westergaard were studied and a comprehensive theoretical model was developed. The fibercomposite dowels were found to provide strengths and behavioral characteristics that appear promising as a potential substitute for steel dowels.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Many reports have been written concerning investigations of concrete sealants. The primary concern of most investigators is the protection of bridge decks from de-icing chemicals which cause surface scaling and, when allowed to permeate to reinforcing steel, result in deep spalling and general concrete deterioration. The problem of protecting abutments and pier tops from salt solutions entails a significantly different approach than the problem of protecting bridge decks. The epoxy resins become eligible as a protective material since one need not be concerned with slipperiness or its abrasive characteristics. Protection with linseed oil at regular intervals would prove bothersome because of the inaccessibility of pier tops after the deck is placed. The primary purpose of this investigation was to evaluate various commercial products in terms of their ability to prevent concrete scaling of bridge abutments and pier tops which are subject to salt water deterioration.