61 resultados para Railroad track settlement
Resumo:
Newsletter produced by the Iowa Department of Transportation's Office of Rail Transportation.
Resumo:
Iowa Department of Transportation's Office of Rail Transportation newsletter
Resumo:
Abandonment and discontinuance of railroad service is allowed by federal law which permits a carrier to end its obligation to provide common carrier service over a particular rail line. Although a number of specific reasons may be given for the abandonment, it is generally based on economic factors. This booklet is intended to provide information about the abandonment process and some guidance concerning how to prepare for an abandonment. This information is based on rules established by the Interstate Commerce Commission Termination Act of 1995, the Surface Transportation Board (successor to the former Interstate Commerce Commission), and the Staggers Rail Act of 1980, and the policies and procedures of the Iowa Department of Transportation.
Resumo:
Iowa railroad map of Iowa trains.
Resumo:
Iowa railroad service map of Iowa trains in color.
Resumo:
Iowa railroad chronology of Iowa Railroad Abandonments.
Resumo:
Iowa railroad traffic density.
Resumo:
The Attorney General’s Consumer Protection Division receives hundreds of calls and consumer complaints every year. Follow these tips to avoid unexpected expense and disappointments. This record is about: Beware of “Debt Settlement” Companies
Resumo:
Iowa’s Rail Environment Iowa’s rail transportation system provides both freight and passenger service. Rail serves a variety of trips, including those within Iowa and those to other states as well as to foreign markets. While rail competes with other modes, it also cooperates with those modes to provide intermodal services to Iowans. In 2009 Iowa’s rail transportation system could be described as follows: Freight Iowa’s 130,000-mile freight transportation system includes an extensive railroad network, a well-developed highway system, two bordering navigable waterways, and a pipeline network as well as air cargo facilities. While rail accounts for only 3 percent of the freight network, it carries 43 percent of Iowa’s freight tonnage. A great variety of commodities ranging from fresh fish to textiles to optical products are moved by rail. However, most of the Iowa rail shipments consist of bulk commodities, including grain, grain products, coal, ethanol, and fertilizers. The railroad network performs an important role in moving bulk commodities produced and consumed in the state to local processors, livestock feeders, river terminals and ports for foreign export. The railroad’s ability to haul large volumes, long distances at low costs will continue to be a major factor in moving freight and improving the economy of Iowa. Key 2008 Facts • 3,945 miles of track • 18 railroads • 49.5 million tons shipped • 39.7 million tons received • 2 Amtrak routes • 6 Amtrak stations • 66,286 rail passenger rides Key Rail Trends • slightly fewer miles being operated; • railroads serving Iowa has remained the same; • more rail freight traffic; • more tons hauled per car; • higher average rail rates per ton-mile since 2002; • more car and tons hauled per locomotive; and • more ton miles per gallon of fuel consumed. Iowa’s rail system and service has been evolving over time relative to its size, financial conditions, and competition from other modes.
Resumo:
In an attempt to solve the bridge problem faced by many county engineers, this investigation focused on a low cost bridge alternative that consists of using railroad flatcars (RRFC) as the bridge superstructure. The intent of this study was to determine whether these types of bridges are structurally adequate and potentially feasible for use on low volume roads. A questionnaire was sent to the Bridge Committee members of the American Association of State Highway and Transportation Officials (AASHTO) to determine their use of RRFC bridges and to assess the pros and cons of these bridges based on others’ experiences. It was found that these types of bridges are widely used in many states with large rural populations and they are reported to be a viable bridge alternative due to their low cost, quick and easy installation, and low maintenance. A main focus of this investigation was to study an existing RRFC bridge that is located in Tama County, IA. This bridge was analyzed using computer modeling and field load testing. The dimensions of the major structural members of the flatcars in this bridge were measured and their properties calculated and used in an analytical grillage model. The analytical results were compared with those obtained in the field tests, which involved instrumenting the bridge and loading it with a fully loaded rear tandem-axle truck. Both sets of data (experimental and theoretical) show that the Tama County Bridge (TCB) experienced very low strains and deflections when loaded and the RRFCs appeared to be structurally adequate to serve as a bridge superstructure. A calculated load rating of the TCB agrees with this conclusion. Because many different types of flatcars exist, other flatcars were modeled and analyzed. It was very difficult to obtain the structural plans of RRFCs; thus, only two additional flatcars were analyzed. The results of these analyses also yielded very low strains and displacements. Taking into account the experiences of other states, the inspection of several RRFC bridges in Oklahoma, the field test and computer analysis of the TCB, and the computer analysis of two additional flatcars, RRFC bridges appear to provide a safe and feasible bridge alternative for low volume roads.
Resumo:
Iowa railroad map of Iowa trains.
Resumo:
Traces the origin and growth of the Mennonite movement from its first summation into a creed in Holland and its story as it has been recorded in American, and in later years in Iowa.
Resumo:
Since the introduction of expanded levels of intrastate service on October 30, 2006, Amtrak trains in Illinois have produced impressive gains in both ridership and ticket revenue. This success and continuing stakeholder support has given rise to a formal request from the Illinois Department of Transportation (“Ill. DOT”) to Amtrak to develop a feasibility study regarding possible service consisting of a morning and an evening train in each direction between Chicago and the Quad Cities. The area between Chicago and the Quad Cities includes many rapidly growing communities. From Chicago toward the West and South, many towns and cities have experienced double digit growth increases in population since the year 2000. Southern DuPage, Cook and Will counties have seen especially strong growth, pressuring highway infrastructure, utilities, and schools. Community development and highway congestion are readily apparent when traveling the nearly 3 hour, 175 mile route between Chicago and the Quad Cities. As information, there are only three weekday round trip bus frequencies available between Chicago and the Quad Cities. The Quad City International Airport offers a total of 10 daily scheduled round trip flights to Chicago's O'Hare International Airport via two separate carriers flying regional jets. The Quad Cities (Davenport, Moline, Rock Island, and Bettendorf) are located along the Mississippi River. Nearly 60% of its visitors are from the Chicago area. With dozens of miles of scenic riverfront, river boating, casinos, and thousands of acres of expansive public spaces, the Quad Cities area is a major draw from both Iowa and Illinois. The huge Rock Island Arsenal, one of the largest military arsenals in the country and located along the river, is transitioning to become the headquarters of the United States First Army. As will be discussed later in the report, there is only one logical rail route through the Quad Cities themselves. The Iowa Interstate Railroad operates through the Quad Cities along the river and heads west through Iowa. The Quad Cities are considering at least three potential locations for an Amtrak station. A study now underway supported by several local stakeholders will recommend a site which will then be considered, given available local and other financial support. If Amtrak service were to terminate in the Quad Cities, an overnight storage track of sufficient length along with ample parking and certain other requirements covered elsewhere in the report would be required.
Resumo:
This report presents a review of literature on geosynthetic reinforced soil (GRS) bridge abutments, and test results and analysis from two field demonstration projects (Bridge 1 and Bridge 2) conducted in Buchanan County, Iowa, to evaluate the feasibility and cost effectiveness of the use of GRS bridge abutments on low-volume roads (LVRs). The two projects included GRS abutment substructures and railroad flat car (RRFC) bridge superstructures. The construction costs varied from $43k to $49k, which was about 50 to 60% lower than the expected costs for building a conventional bridge. Settlement monitoring at both bridges indicated maximum settlements ≤1 in. and differential settlements ≤ 0.2 in transversely at each abutment, during the monitoring phase. Laboratory testing on GRS fill material, field testing, and in ground instrumentation, abutment settlement monitoring, and bridge live load (LL) testing were conducted on Bridge 2. Laboratory test results indicated that shear strength parameters and permanent deformation behavior of granular fill material improved when reinforced with geosynthetic, due to lateral restraint effect at the soilgeosynthetic interface. Bridge LL testing under static loads indicated maximum deflections close to 0.9 in and non-uniform deflections transversely across the bridge due to poor load transfer between RRFCs. The ratio of horizontal to vertical stresses in the GRS fill was low (< 0.25), indicating low lateral stress on the soil surrounding GRS fill material. Bearing capacity analysis at Bridge 2 indicated lower than recommended factor of safety (FS) values due to low ultimate reinforcement strength of the geosynthetic material used in this study and a relatively weak underlying foundation layer. Global stability analysis of the GRS abutment structure revealed a lower FS than recommended against sliding failure along the interface of the GRS fill material and the underlying weak foundation layer. Design and construction recommendations to help improve the stability and performance of the GRS abutment structures on future projects, and recommendations for future research are provided in this report.
Resumo:
Research project HR-219 was sponsored by the Iowa Highway Research Board and the Iowa Department of Transportation. The funding authorized from the Primary Road Research Fund was $11,200. The author wishes to express his appreciation to Iowa DOT personnel for their participation in the research. The special features were incorporated into the plans by Road Design personnel. Office of Materials personnel developed the proportions for the flowable mortar. Project inspection was provided by the Creston Resident Engineer and his staff. The excellent cooperation of the contractors contributed to the success of the research. The prime contractor was Irving F. Jensen Company, Inc. of Sioux City, Iowa who retained Reilly Construction Company of Ossian, Iowa and GNA Concrete, Inc. of Grimes, Iowa as subcontractors for the special culvert backfilling.