29 resultados para Normal operations
Resumo:
"Metric Training For The Highway Industry", HR-376 was designed to produce training materials for the various divisions of the Iowa DOT, local government and the highway construction industry. The project materials were to be used to introduce the highway industry in Iowa to metric measurements in their daily activities. Five modules were developed and used in training over 1,000 DOT, county, city, consultant and contractor staff in the use of metric measurements. The training modules developed deal with the planning through operation areas of highway transportation. The materials and selection of modules were developed with the aid of an advisory personnel from the highway industry. Each module is design as a four hour block of instruction and a stand along module for specific types of personnel. Each module is subdivided into four chapters with chapter one and four covering general topics common to all subjects. Chapters two and three are aimed at hands on experience for a specific group and subject. This module includes: Module 2 - Construction and Maintenance Operations and Reporting. This module provides hands on examples of applications of metric measurements in the construction and maintenance field operations.
Resumo:
This report discusses the asphalt pavement recycling project designated Project HR-188 in Kossuth County, Iowa. Specific objectives were: (a) to determine the effectiveness of drum mixing plant modifications designed to control air pollution within limits specified by the Iowa Department of Environmental Quality; (b) to assess the impact of varying the proportions of recycled and virgin aggregates, (c) to assess the impact of varying the production rate of the plant, and (d) to assess the impact of varying the mixing temperature. The discussion includes information on the proposed use of research funds, project location and description, the project planning conference, plan development, bid letting, asphalt plant configuration, actual plant operation, why this method is successful, probable process limitations, pollution results, recycled pavement test results, and the cost of virgin vs. recycled asphalt pavements.
Resumo:
This research project was directed at laboratory and field evaluation of sodium montmorillonite clay (bentonite) as a dust palliative for limestone surfaced secondary roads. It had been postulated that the electrically charged surfaces of the clay particles could interact with the charged surfaces of the limestone and act as a bonding agent to agglomerate fine (-#200) particulates and also to band the fine particulates to larger (+#200) limestone particles. Laboratory testing using soda ash dispersed bentonite treatment of limestone fines indicated significant improvement of compressive strength and slaking characteristics. It was recommended that the project proceed to field trials and test roads were constructed in Dallas and Adair counties in Iowa. Soda ash dispersed bentonite solutions can be field mixed and applied with conventional spray distribution equipment. A maximum of 1.5% bentonite(by weight of aggregate)can be applied at one time. Higher applications would have to be staged allowing the excess moisture to evaporate between applications. Construction of higher application treatments can be accomplished by adding dry bentonite to the surfacing material and then by dry road mixing. The soda ash water solution can then be spray applied and the treated surfacing material wet mixed by motor graders to a consistency of 3 to 4 inch slump concrete. Two motor graders working in tandem can provide rapid mixing for both methods of construction. Calcium and magnesium chloride treatments are 2 to 3 times more effective in dust reduction in the short term (3-4 months) but are prone to washboarding and potholing due to maintenance restrictions. Bentonite treatment at the 2-3% level is estimated to provide a 30-40% dust reduction over the long term(18-24 months). Normal maintenance blading operations can be used on bentonite treated areas. Vehicle braking characteristics are not adversely affected up to the 3.0% treatment level. The bentonite appears to be functioning as a banding agent to bind small particulates to larger particles and is acting to agglomerate fine particles of limestone. This bonding capability appears recoverable from environmental effects of winter, and from alternating wet and dry periods. The bentonite appears to be able to interact with new applications of limestone maintenance material and maintains a dust reduction capability. Soda ash dispersed bentonite treatment is approximately 10 times more cost effective per percent dust reduction than conventional chloride treatments with respect to time. However,the disadvantage is that there is not the initial dramatic reduction in dust generation as with the chloride treatment. Although dust is reduced 30-40% after treatment there is still dust being generated and the traveling public or residents may not perceive the reduction.
Resumo:
This research project was directed at laboratory and field evaluation of sodium montmorillonite clay (Bentonite) as a dust palliative for limestone surfaced secondary roads. It was postulated that the electrically charged surfaces (negative) of the clay particles could interact with the charged surfaces (positive) of the limestone and act as a bonding agent to agglomerate fine (-#200) particulates, and also to bond the fine particulates to larger (+#200) limestone particles. One mile test roads were constructed in Tama, Appanoose, and Hancock counties in Iowa using Bentonite treatment levels (by weight of aggregate) ranging from 3.0 to 12.0%. Construction was accomplished by adding dry Bentonite to the surfacing material and then dry road mixing. The soda ash/water solution (dispersing agent) was spray applied and the treated surfacing material wet mixed by motor graders to a consistency of 2 to 3 inch slump concrete. Two motor graders working in tandem provided rapid mixing. Following wet mixing the material was surface spread and compacted by local traffic. Quantitative and qualitative periodic evaluations and testing of the test roads was conducted with respect to dust generation, crust development, roughness, and braking characteristics. As the Bentonite treatment level increased dust generation decreased. From a cost/benefit standpoint, an optimum level of treatment is about 8% (by weight of aggregate). For roads with light traffic, one application at this treatment level resulted in a 60-70% average dust reduction in the first season, 40-50% in the second season, and 20-30% in the third season. Crust development was rated at two times better than untreated control sections. No discernible trend was evident with respect to roughness. There was no evident difference in any of the test sections with respect to braking distance and braking handling characteristics, under wet surface conditions compared to the control sections. Chloride treatments are more effective in dust reduction in the short term (3-4 months). Bentonite treatment is capable of dust reduction over the long term (2-3 seasons). Normal maintenance blading operations can be used on Bentonite treated areas. Soda ash dispersed Bentonite treatment is estimated to be more than twice as cost effective per percent dust reduction than conventional chloride treatments, with respect to time. However, the disadvantage is that there is not the initial dramatic reduction in dust generation as with the chloride treatment. Although dust is reduced significantly after treatment there is still dust being generated. Video evidence indicates that the dust cloud in the Bentonite treated sections does not rise as high, or spread as wide as the cloud in the untreated section. It also settles faster than the cloud in the untreated section. This is considered important for driving safety of following traffic, and for nuisance dust invasion of residences and residential areas. The Bentonite appears to be functioning as a bonding agent.
Resumo:
The physical-chemical testing of fly ashes indicates that, under normal operating conditions, a low variability of results can be expected from a particular generating plant unit. However, unannounced changes in coal source and/or plant operations do occur and they may result in an ash with undesirable properties. Since these properties can be detected by physical-chemical testing, it is recommended that this testing be performed on a lot-by-lot basis when a plant is supplying fly ash to a construction project.
Resumo:
Report on a special investigation of the University of Iowa Athletic Ticket Office and the operations of the Hawkeye Express for the period September 1, 2005 through November 30, 2013
Resumo:
Audit report of the Honey Creek Resort Operations Account managed by Central Group Management, LLC (Honey Creek Resort) as of and for the year ended June 30, 2014
Resumo:
Audit report on the Honey Creek Resort Operations Account maintained by Central Group Management, LLC for the year ended June 30, 2014
Resumo:
Capacity is affected by construction type and its intensity on adjacent open traffic lanes. The effect on capacity is a function of vehicles moving in and out of the closed lanes of the work zone, and the presence of heavy construction vehicles. Construction activity and its intensity, however, are not commonly considered in estimating capacity of a highway lane. The main purpose of this project was to attempt to quantify the effects of construction type and intensity (e.g. maintenance, rehabilitation, reconstruction, and milling) on work zone capacity. The objective of this project is to quantify the effects of construction type and its intensity on work zone capacity and to develop guidelines for MoDOT to estimate the specific operation type and intensity that will improve the traffic flow by reducing the traffic flow and queue length commonly associated with work zones. Despite the effort put into field data collection, the data collected did not show a full speed-flow chart therefore extracting a reliable capacity value was difficult. A statistical comparison between the capacity values found in this study using either methodologies indicates that there is an effect of construction activity on the values work zone capacity. It was found that the heavy construction activity reduces the capacity. It is very beneficial to conduct similar studies on the capacity of work zone with different lane closure barriers, which is also directly related to the type of work zone being short-term or long-term work zones. Also, the effect of different geometric and environmental characteristics of the roadway should be considered in future studies.
Resumo:
Remote monitoring through the use of cameras is widely utilized for traffic operation, but has not been utilized widely for roadway maintenance operations. The Utah Department of Transportation (UDOT) has implemented a new remote monitoring system, referred to as a Cloud-enabled Remote Video Streaming (CRVS) camera system for snow removal-related maintenance operations in the winter. The purpose of this study was to evaluate the effectiveness of the use of the CRVS camera system in snow removal-related maintenance operations. This study was conducted in two parts: opinion surveys of maintenance station supervisors and an analysis on snow removal-related maintenance costs. The responses to the opinion surveys mostly displayed positive reviews of the use of the CRVS cameras. On a scale of 1 (least effective) to 5 (most effective), the average overall effectiveness given by the station supervisors was 4.3. An expedition trip for this study was defined as a trip that was made to just check the roadways if snow-removal was necessary. The average of the responses received from surveys was calculated to be a 33 percent reduction in expedition trips. For the second part of this study, an analysis was performed on the snow removal-related maintenance cost data provided by UDOT to see if the installation of a CRVS camera had an effect in reducing expedition trips. This expedition cost comparison was performed for 10 sets of maintenance stations within Utah. It was difficult to make any definitive inferences from the comparison of expedition costs over the years for which precipitation and expedition cost data were available; hence a statistical analysis was performed using the Mixed Model ANOVA. This analysis resulted in an average of 14 percent higher ratio of expedition costs at maintenance stations with a CRVS camera before the installation of the camera compared to the ratio of expedition costs after the installation of the camera. This difference was not proven to be statistically significant at the 95 percent confident level, but indicated that the installation of CRVS cameras was on the average helpful in reducing expedition costs and may be considered practically significant. It is recommended that more detailed and consistent maintenance cost records be prepared for accurate analysis of cost records for this type of study in the future.
Resumo:
Appendices for HR-138.
Resumo:
The Center for Transportation Research and Education (CTRE) used the traffic simulation model CORSIM to access proposed capacity and safety improvement strategies for the U.S. 61 corridor through Burlington, Iowa. The comparison between the base and alternative models allow for evaluation of the traffic flow performance under the existing conditions as well as other design scenarios. The models also provide visualization of performance for interpretation by technical staff, public policy makers, and the public. The objectives of this project are to evaluate the use of traffic simulation models for future use by the Iowa Department of Transportation (DOT) and to develop procedures for employing simulation modeling to conduct the analysis of alternative designs. This report presents both the findings of the U.S. 61 evaluation and an overview of model development procedures. The first part of the report includes the simulation modeling development procedures. The simulation analysis is illustrated through the Burlington U.S. 61 corridor case study application. Part I is not intended to be a user manual but simply introductory guidelines for traffic simulation modeling. Part II of the report evaluates the proposed improvement concepts in a side by side comparison of the base and alternative models.
Resumo:
The goal of this research project was to develop a method to measure the performance of a winter maintenance program with respect to the task of providing safety and mobility to the travelling public. Developing these measures required a number of steps, each of which was accomplished. First, the impact of winter weather on safety (crash rates) and mobility (average vehicle speeds were measured by a combination of literature reviews and analysis of Iowa Department of Transportation traffic and Road Weather Information System data. Second, because not all winter storms are the same in their effects on safety and mobility, a method had to be developed to determine how much the various factors that describe a winter storm actually change safety and mobility. As part of this effort a storm severity index was developed, which ranks each winter storm on a scale between 0 (a very benign storm) and 1 (the worst imaginable storm). Additionally a number of methods of modeling the relationships between weather, winter maintenance actions and road surface conditions were developed and tested. The end result of this study was a performance measure based on average vehicle speed. For a given class of road, a maximum expected average speed reduction has been identified. For a given storm, this maximum expected average speed reduction is modified by the storm severity index to give a target average speed reduction. Thus, if for a given road the maximum expected average speed reduction is 20 mph, and the storm severity for a particular storm is 0.6, then the target average speed reduction for that road in that storm is 0.6 x 20 mph or 12 mph. If the average speed on that road during and after the storm is only 12 mph or less than the average speed on that road in good weather conditions, then the winter maintenance performance goal has been met.
Resumo:
Audit report on the Honey Creek Resort Operations Account maintained by Central Group Management, LLC for the year ended June 30, 2015