18 resultados para Mineral mixture


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The stability of air bubbles in fresh concrete can have a profound influence of the potential durability of the system, because excessive losses during placement and consolidation can compromise the ability of the mixture to resist freezing and thawing. The stability of air void systems developed by some air entraining admixtures (AEAs) could be affected by the presence of some polycarboxylate-based water reducing admixtures (WRAs). The foam drainage test provides a means of measuring the potential stability of air bubbles in a paste. A barrier to acceptance of the test was that there was little investigation of the correlation with field performance. The work reported here was a limited exercise seeking to observe the stability of a range of currently available AEA/WRA combinations in the foam drainage test; then, to take the best and the worst and observe their stabilities on concrete mixtures in the lab. Based on the data collected, the foam drainage test appears to identify stable combinations of AEA and WRA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Concrete durability may be considered as the ability to maintain serviceability over the design life without significant deterioration, and is generally a direct function of the mixture permeability. Therefore, reducing permeability will improve the potential durability of a given mixture and, in turn, improve the serviceability and longevity of the structure. Given the importance of this property, engineers often look for methods that can decrease permeability. One approach is to add chemical compounds known as integral waterproofing admixtures or permeability-reducing admixtures, which help fill and block capillary pores in the paste. Currently, there are no standard approaches to evaluate the effectiveness of permeability-reducing admixtures or to compare different products in the US. A review of manufacturers’ data sheets shows that a wide range of test methods have been used, and rarely are the same tests used on more than one product. This study investigated the fresh and hardened properties of mixtures containing commercially available hydrophilic and hydrophobic types of permeability-reducing admixtures. The aim was to develop a standard test protocol that would help owners, engineers, and specifiers compare different products and to evaluate their effects on concrete mixtures that may be exposed to hydrostatic or non-hydrostatic pressure. In this experimental program, 11 concrete mixtures were prepared with a fixed water-to-cement ratio and cement content. One plain mixture was prepared as a reference, 5 mixtures were prepared using the recommended dosage of the different permeability-reducing admixtures, and 5 mixtures were prepared using double the recommended dosage. Slump, air content, setting time, compressive and flexural strength, shrinkage, and durability indicating tests including electrical resistivity, rapid chloride penetration, air permeability, permeable voids, and sorptivity tests were conducted at various ages. The data are presented and recommendations for a testing protocol are provided.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Samples of both recycled and nonrecycled asphaltic concrete were extracted in increments by the Abson Recovery Method and the penetration of the asphalt from each increment determined. The recycled projects were plantsite operations containing various amounts of virgin gravel. Cored samples were taken from the pavements on Kossuth County roads that were constructed as recycled projects in 1975, 1976, and 1977. Cored samples were also taken from a Kossuth County paving project done in 1975, that was not recycled. Comparison mix samples from 1978 construction projects in Marshall and Woodbury Counties of non - recycled projects are included. The test data from the penetrations of the recovered asphalt indicates that mixing of the old and new asphalt occurs very extensively in the hot recycling process. In laboratory controlled conditions it is difficult to coat aggregates with different penetration asphalts and prevent them from mixing.