26 resultados para Management control
Resumo:
Agency Performance Report
Resumo:
The Office of the Drug Policy Coordinator is established in Chapter 80E of the Code of Iowa. The Coordinator directs the Governor’s Office of Drug Control Policy; coordinates and monitors all statewide counter-drug efforts, substance abuse treatment grants and programs, and substance abuse prevention and education programs; and engages in other related activities involving the Departments of public safety, corrections, education, public health, and human services. The coordinator assists in the development of local and community strategies to fight substance abuse, including local law enforcement, education, and treatment activities. The Drug Policy Coordinator serves as chairperson to the Drug Policy Advisory Council. The council includes the directors of the departments of corrections, education, public health, public safety, human services, division of criminal and juvenile justice planning, and human rights. The Council also consists of a prosecuting attorney, substance abuse treatment specialist, substance abuse prevention specialist, substance abuse treatment program director, judge, and one representative each from the Iowa Association of Chiefs of Police and Peace Officers, the Iowa State Police Association, and the Iowa State Sheriff’s and Deputies’ Association. Council members are appointed by the Governor and confirmed by the Senate. The council makes policy recommendations related to substance abuse education, prevention, and treatment, and drug enforcement. The Council and the Coordinator oversee the development and implementation of a comprehensive State of Iowa Drug Control Strategy. The Office of Drug Control Policy administers federal grant programs to improve the criminal justice system by supporting drug enforcement, substance abuse prevention and offender treatment programs across the state. The ODCP prepares and submits the Iowa Drug and Violent Crime Control Strategy to the U.S. Department of Justice, with recommendations from the Drug Policy Advisory Council. The ODCP also provides program and fiscal technical assistance to state and local agencies, as well as program evaluation and grants management.
Resumo:
Quality management concrete allows the contractor to develop the mix design for the portland cement concrete. This research was initiated to gain knowledge about contractor mix designs. An experiment was done to determine the variation in cylinders, beams, and cores that could be used to test the strength of the contractor's mix. In addition, the contractor's cylinder strengths and gradations were analyzed for statistical stability and process capability. This research supports the following conclusions: (1) The mold type used to cast the concrete cylinders had an effect on the compressive strength of the concrete. The 4.5-in. by 9-in. (11.43-cm by 22.86-cm) cylinders had lower strength at a 95% confidence interval than the 4-in. by 8-in. (10.16-cm by 20.32-cm) and 6-in. by 12-in. (15.24-cm by 30.48-cm) cylinders. (2) The low vibration consolidation effort had the lowest strength of the three consolidation efforts. In particular, an interaction occurred between the low vibration effort and the 4.5-in. by 9-in. (11.43-cm by 22.86-cm) mold. This interaction produced very low compressive strengths when compared with the other consolidation efforts. (3) A correlation of 0.64 R-squared was found between the 28 day cylinder and 28 day compressive strengths. (4) The compressive strength results of the process control testing were not in statistical control. The aggregate gradations were mostly in statistical control. The gradation process was capable of meeting specification requirements. However, many of the sieves were off target. (5) The fineness modulus of the aggregate gradations did not correlate well with the strength of the concrete. However, this is not surprising considering that the gradation tests and the strength tests did not represent the same material. In addition, the concrete still has many other variables that will affect its strength that were not controlled.
Resumo:
Portable (roll-out) stop signs are used at school crossings in over 300 cities in Iowa. Their use conforms to the Code of Iowa, although it is not consistent with the provisions of the Manual on Uniform Traffic Control Devices adopted for nationwide application. A survey indicated that most users in Iowa believe that portable stop signs provide effective protection at school crossings, and favor their continued use. Other non-uniform signs that fold or rotate to display a STOP message only during certain hours are used at school crossings in over 60 cities in Iowa. Their use does not conform to either the Code of Iowa or the Manual on Uniform Traffic Control Devices. Users of these devices also tend to favor their continued use. A survey of other states indicated that use of temporary devices similar to those used in Iowa is not generally sanctioned. Some unsanctioned use apparently occurs in several states, however. A different type of portable stop sign for school crossings is authorized and widely used in one state. Portable stop signs similar to those used in Iowa are authorized in another state, although their use is quite limited. A few reports in the literature reviewed for this research discussed the use of portable stop signs. The authors of these reports uniformly recommended against the use of portable or temporary traffic control devices. Various reasons for this recommendation were given, although data to support the recommendation were not offered. As part of this research, field surveys were conducted at 54 locations in 33 communities where temporary stop control devices were in use at school crossings. Research personnel observed the obedience to stop control and measured the vehicular delay incurred. Stopped delay averaged 1.89 seconds/entering vehicle. Only 36.6 percent of the vehicles were observed to come to a complete stop at the study locations controlled by temporary stop control devices. However, this level of obedience does not differ from that observed at intersections controlled by permanent stop signs. Accident experience was compiled for 76 intersections in 33 communities in Iowa where temporary stop signs were used and, for comparative purposes, at 76 comparable intersections having other forms of control or operating without stop control. There were no significant differences in accident experience An economic analysis of vehicle operating costs, delay costs, and other costs indicated that temporary stop control generated costs only about 12 percent as great as permanent stop control for a street having a school crossing. Midblock pedestrian-actuated signals were shown to be cost effective in comparison with temporary stop signs under the conditions of use assumed. Such signals could be used effectively at a number of locations where temporary stop signs are being used. The results of this research do not provide a basis for recommending that use of portable stop signs be prohibited. However, erratic patterns of use of these devices and inadequate designs suggest that improved standards for their use are needed. Accordingly, nine recommendations are presented to enhance the efficiency of vehicular flow at school crossings, without causing a decline in the level of pedestrian protection being afforded.
Resumo:
Many states are striving to keep their deer population to a sustainable and controllable level while maximizing public safety. In Iowa, measures to control the deer population include annual deer hunts and special deer herd management plans in urban areas. While these plans may reduce the deer population, traffic safety in these areas has not been fully assessed. Using deer population data from the Iowa Department of Natural Resources and data on deer-vehicle crashes and deer carcass removals from the Iowa Department of Transportation, the authors examined the relationship between deer-vehicle collisions, deer density, and land use in three urban areas in Iowa that have deer management plans in place (Cedar Rapids, Dubuque, and Iowa City) over the period 2002 to 2007. First, a comparison of deer-vehicle crash counts and deer carcass removal counts was conducted at the county level. Further, the authors estimated econometric models to investigate the factors that influence the frequency and severity of deer-vehicle crashes in these zones. Overall, the number of deer carcasses removed on the primary roads in these counties was greater than the number of reported deervehicle crashes on those roads. These differences can be attributed to a number of reasons, including variability in data reporting and data collection practices. In addition, high rates of underreporting of crashes were found on major routes that carry high volumes of traffic. This study also showed that multiple factors affect deer-vehicle crashes and corresponding injury outcomes in urban management zones. The identified roadway and non-roadway factors could be useful for identifying locations on the transportation system that significantly impact deer species and safety and for determining appropriate countermeasures for mitigation. Efforts to reduce deer density adjacent to roads and developed land and to provide wider shoulders on undivided roads are recommended. Improving the consistency and accuracy of deer carcass and deer-vehicle collision data collection methods and practices is also desirable.
Resumo:
The Office of the Drug Policy Coordinator is established in Chapter 80E of the Code of Iowa. The Coordinator directs the Governor’s Office of Drug Control Policy; coordinates and monitors all statewide counter-drug efforts, substance abuse treatment grants and programs, and substance abuse prevention and education programs; and engages in other related activities involving the Departments of public safety, corrections, education, public health, and human services. The coordinator assists in the development of local and community strategies to fight substance abuse, including local law enforcement, education, and treatment activities. The Drug Policy Coordinator serves as chairperson to the Drug Policy Advisory Council. The council includes the directors of the departments of corrections, education, public health, public safety, human services, division of criminal and juvenile justice planning, and human rights. The Council also consists of a prosecuting attorney, substance abuse treatment specialist, substance abuse prevention specialist, substance abuse treatment program director, judge, and one representative each from the Iowa Association of Chiefs of Police and Peace Officers, the Iowa State Police Association, and the Iowa State Sheriff’s and Deputies’ Association. Council members are appointed by the Governor and confirmed by the Senate. The council makes policy recommendations related to substance abuse education, prevention, and treatment, and drug enforcement. The Council and the Coordinator oversee the development and implementation of a comprehensive State of Iowa Drug Control Strategy. The Office of Drug Control Policy administers federal grant programs to improve the criminal justice system by supporting drug enforcement, substance abuse prevention and offender treatment programs across the state. The ODCP prepares and submits the Iowa Drug and Violent Crime Control Strategy to the U.S. Department of Justice, with recommendations from the Drug Policy Advisory Council. The ODCP also provides program and fiscal technical assistance to state and local agencies, as well as program evaluation and grants management.
Resumo:
With inflation, there is no longer a completely adequate budget for highway construction and maintenance. Restricted budgets have generated development and implementation of pavement management programs. A need for management guidelines generated National Cooperative Highway Research Program Synthesis of Highway Practice 84, "Evaluation Criteria and Priority Setting for State Highway Programs". Traffic volumes and present conditions are two major factors in determining the priority of a proposed highway improvement. The Iowa DOT, Highway Division, Office of Materials has been conducting pavement condition inventory surveys on a three-year frequency since 1969 as input for pavement management. Development of substantial wheel rutting on paved roadways results in a potential hazard to highway safety. During periods of rain, these water-filled ruts may cause hydroplaning and loss of vehicle control. It is, therefore, imparitive that Iowa roadways be continually monitored for rut depths and further that this data be used in a pavement management program to determine priorities for rehabilitation or resurfacing.
Resumo:
It is commonly regarded that the overuse of traffic control devices desensitizes drivers and leads to disrespect, especially for low-volume secondary roads with limited enforcement. The maintenance of traffic signs is also a tort liability concern, exacerbated by unnecessary signs. The Federal Highway Administration’s (FHWA) Manual on Uniform Traffic Control Devices (MUTCD) and the Institute of Transportation Engineer’s (ITE) Traffic Control Devices Handbook provide guidance for the implementation of STOP signs based on expected compliance with right-of-way rules, provision of through traffic flow, context (proximity to other controlled intersections), speed, sight distance, and crash history. The approach(es) to stop is left to engineering judgment and is usually dependent on traffic volume or functional class/continuity of system. Although presently being considered by the National Committee on Traffic Control Devices, traffic volume itself is not given as a criterion for implementation in the MUTCD. STOP signs have been installed at many locations for various reasons which no longer (or perhaps never) met engineering needs. If in fact the presence of STOP signs does not increase safety, removal should be considered. To date, however, no guidance exists for the removal of STOP signs at two-way stop-controlled intersections. The scope of this research is ultra-low-volume (< 150 daily entering vehicles) unpaved intersections in rural agricultural areas of Iowa, where each of the 99 counties may have as many as 300 or more STOP sign pairs. Overall safety performance is examined as a function of a county excessive use factor, developed specifically for this study and based on various volume ranges and terrain as a proxy for sight distance. Four conclusions are supported: (1) there is no statistical difference in the safety performance of ultra-low-volume stop-controlled and uncontrolled intersections for all drivers or for younger and older drivers (although interestingly, older drivers are underrepresented at both types of intersections); (2) compliance with stop control (as indicated by crash performance) does not appear to be affected by the use or excessive use of STOP signs, even when adjusted for volume and a sight distance proxy; (3) crash performance does not appear to be improved by the liberal use of stop control; (4) safety performance of uncontrolled intersections appears to decline relative to stop-controlled intersections above about 150 daily entering vehicles. Subject to adequate sight distance, traffic professionals may wish to consider removal of control below this threshold. The report concludes with a section on methods and legal considerations for safe removal of stop control.
Resumo:
The Iowa Department of Transportation's Access Management Task Force was established as part of the Iowa Department of Transportation's overall Safety Management System (SMS) effort. The goal of the Access Management Task Force is to develop a program designed to educate and market the concept and benefits of access management to landowners and developers, professional planners and engineers, planning and zoning staff members, appointed and elected officials, and motorists. Access management is pursued through the design and control of driveways, curb cuts, turning movements, interior circulation of parking lots, and public street connections and intersections. Usually, state highways or major urban and suburban arterial streets are the targets of access management projects. Access management is also a concern on main county roads when there is a transition from a rural environment to a town or city.
Resumo:
Pavement and shoulder edge drop-offs commonly occur in work zones as the result of overlays, pavement replacement, or shoulder construction. The depth of these elevation differentials can vary from approximately one inch when a flexible pavement overlay is applied to several feet where major reconstruction is undertaken. The potential hazards associated with pavement edge differentials depend on several factors including depth of the drop-off, shape of the pavement edge, distance from traveled way, vehicle speed, traffic mix, volume, and other factors. This research was undertaken to review current practices in other states for temporary traffic control strategies addressing lane edge differentials and to analyze crash data and resultant litigation related to edge drop-offs. An objective was to identify cost-effective practices that would minimize the potential for and impacts of edge drop crashes in work zones. Considerable variation in addressing temporary traffic control in work zones with edge drop-off exposure was found among the states surveyed. Crashes related to pavement edge drop-offs in work zones do not commonly occur in the state of Iowa, but some have resulted in significant tort claims and settlements. The use of benefit/cost analysis may provide guidance in selection of an appropriate mitigation and protection of edge drop-off conditions. Development and adoption of guidelines for design of appropriate traffic control for work zones that include edge drop-off exposure, particularly identifying effective use of temporary barrier rail, may be beneficial in Iowa.
Resumo:
This handbook provides a broad, easy to understand reference for temporary traffic control in work zones, addressing the safe and efficient accommodation of all road users: motorists, bicyclists, pedestrians, and those with special needs. When impacting a pedestrian facility, provide ten calendar days advance notification to the local jurisdiction and the National Federation of the Blind of Iowa (www.nfbi.org). The information presented is based on standards and guidance in the 2009 Edition of the Manual on Uniform Traffic Control Devices (MUTCD). References to the MUTCD sign designations in this handbook are shown in parentheses, e.g. (W20-1). Not all the recommendations in this handbook will apply to every circumstance faced by local agencies, and each unique situation may not be addressed. Modifications of the typical applications in this handbook will be required to adapt to specific field conditions. Therefore, use engineering judgment, seeking the advice of experienced professionals and supervisors in difficult and complex interpretations. This handbook can be used as a reference for temporary traffic control in work zones on all city or county roadways. However, always check contract documents and local agency requirements for any pertinent modifications.