23 resultados para MICROTUBULE-STABILIZING MACROLIDE


Relevância:

10.00% 10.00%

Publicador:

Resumo:

In recent years, various types of organic and inorganic materials have been investigated for use as soil stabilizing agents in the construction of highways and airports. Since the properties and environmental conditions of soils vary so greatly from place to place, a stabilizing agent that is suitable for one type of soil may not be satisfactory for another. As a result, it is often desirable to evaluate several stabilizing agents under varying treatment conditions before deciding on a specific one to be used with a given soil. In addition many research programs have been initiated which investigate the effects of these stabilizing agents upon soils.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The production and use of biofuels has increased in the present context of sustainable development. Biofuel production from plant biomass produces not only biofuel or ethanol but also co-products containing lignin, modified lignin, and lignin derivatives. This research investigated the utilization of lignin-containing biofuel co-products (BCPs) in pavement soil stabilization as a new application area. Laboratory tests were conducted to evaluate the performance and the moisture susceptibility of two types of BCP-treated soil samples compared to the performance of untreated and traditional stabilizer-treated (fly ash) soil samples. The two types of BCPs investigated were (1) a liquid type with higher lignin content (co-product A) and (b) a powder type with lower lignin content (co-product B). Various additive combinations (co-product A and fly ash, co-products A and B, etc.) were also evaluated as alternatives to stand-alone co-products. Test results indicate that BCPs are effective in stabilizing the Iowa Class 10 soil classified as CL or A-6(8) and have excellent resistance to moisture degradation. Strengths and moisture resistance in comparison to traditional additives (fly ash) could be obtained through the use of combined additives (co-product A + fly ash; co-product A + co-product B). Utilizing BCPs as a soil stabilizer appears to be one of the many viable answers to the profitability of the bio-based products and the bioenergy business. Future research is needed to evaluate the freeze-thaw durability and for resilient modulus characterization of BCP-modified layers for a variety of pavement subgrade and base soil types. In addition, the long-term performance of these BCPs should be evaluated under actual field conditions and traffic loadings. Innovative uses of BCP in pavement-related applications could not only provide additional revenue streams to improve the economics of biorefineries, but could also serve to establish green road infrastructures.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A multifaceted investigation was undertaken to develop recommendations for methods to stabilize granular road shoulders with the goal of mitigating edge ruts. Included was reconnaissance of problematic shoulder locations, a laboratory study to develop a method to test for changes in granular material stability when stabilizing agents are used, and the construction of three sets of test sections under traffic at locations with problematic granular shoulders. Full results of this investigation are included in this report and its appendices. This report also presents conclusions and recommendations based on the study results.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Soil treated with self-cementing fly ash is increasingly being used in Iowa to stabilize fine-grained pavement subgrades, but without a complete understanding of the short- and long-term behavior. To develop a broader understanding of fly ash engineering properties, mixtures of five different soil types, ranging from ML to CH, and several different fly ash sources (including hydrated and conditioned fly ashes) were evaluated. Results show that soil compaction characteristics, compressive strength, wet/dry durability, freeze/thaw durability, hydration characteristics, rate of strength gain, and plasticity characteristics are all affected by the addition of fly ash. Specifically, Iowa selfcementing fly ashes are effective at stabilizing fine-grained Iowa soils for earthwork and paving operations; fly ash increases compacted dry density and reduces the optimum moisture content; strength gain in soil-fly ash mixtures depends on cure time and temperature, compaction energy, and compaction delay; sulfur contents can form expansive minerals in soil–fly ash mixtures, which severely reduces the long-term strength and durability; fly ash increases the California bearing ratio of fine-grained soil–fly ash effectively dries wet soils and provides an initial rapid strength gain; fly ash decreases swell potential of expansive soils; soil-fly ash mixtures cured below freezing temperatures and then soaked in water are highly susceptible to slaking and strength loss; soil stabilized with fly ash exhibits increased freeze-thaw durability; soil strength can be increased with the addition of hydrated fly ash and conditioned fly ash, but at higher rates and not as effectively as self-cementing fly ash. Based on the results of this study, three proposed specifications were developed for the use of self-cementing fly ash, hydrated fly ash, and conditioned fly ash. The specifications describe laboratory evaluation, field placement, moisture conditioning, compaction, quality control testing procedures, and basis of payment.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Lake Hendricks is a 54 acre man-made lake that is encompassed by a 1,209 acre watershed. Lake Hendricks is currently on the 303(d) Impaired Waters List for algae and pH impairments due to an abundance of algae growth caused by nutrients being delivered to the lake via 11 separate tile lines draining adjoining cropland areas. In 2009, a Watershed Management Plan was developed in partnership with IDALS and the IDNR 319 programs and $256,500 was awarded to address the nutrient and sediment loading of the lake. Over the past three years a total of $251,000 were spent to implement one grade stabilization structure, two sediment basins, two bioreactors, 700 feet of streambank stabilization, 30.7 acres oftimber stand improvement, and 39.4 acres of Conservation Reserve Program (CRP). A proposed wetland structure and three sediment basins are scheduled to be constructed in the fall of 2011. Current water monitoring data is showing an average of 54% Nitrate (N) loading reductions as a result of the installed BMPs. The District feels further reductions are possible by addressing nutrient management issues in the cropland areas, stabilizing additional streambanks, and improving the surrounding woodland areas. The goal is to reduce N loading by an additional 20% and sediment loading by 50 tlac/yr. The resulting collaborative effort may lead to the future de-listing of Lake Hendricks from the 303(d) Impaired Waters List.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The urban portion of the Kettle Creek Watershed is experiencing severe bank and bed erosion due to unchecked stormwater runoff and a steep stream slope. The Kettle Creek Urban Watershed Improvement Project will reduce sediment input to the stream by stabilizing the steam bed with rock-riffle stream stabilization structures and stream bank improvements at select locations. Other components of the watershed are being addressed for excess sediment loads including the agricultural portion by constructing sediment detention basins, and the urban stormwater component by separating the existing combined sanitary and stormwater systems. The urban stream erosion factor represents the weak link in the current watershed impairment. The benefits of the all the watershed improvements components will be realized by all the residents of Kettle Creek Watershed as well as the citizens of Ottumwa.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fly ash, a by-product of coal-fired electricity generating plants, has for years been promoted as a material suitable for highway construction. Disposal of the large quantities of fly ash produced is expensive and creates environmental concerns. The pozzolanic properties make it promotable as a partial Portland cement replacement in pc concrete, a stabilizer for soil and aggregate in embankments and road bases, and a filler material in grout. Stabilizing soils and aggregates for road construction has the potential of using large quantities of fly ash. Iowa Highway Research Board Project HR-194, "Mission-Oriented Dust Control and Surface Improvement Processes for Unpaved Roads", included short test sections of cement, fly ash, and salvaged granular road material mixed for a base in western Iowa. The research showed that cement fly ash aggregate (CFA) has promise as a stabilizing agent in Iowa. There are several sources of sand that when mixed with fly ash may attain strengths much greater than fly ash mixed with salvaged granular road material at little additional cost

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the search for new soil stabilizing agents the effects of six organic cations on plastic limit, liquid limit, shrinkage limit, air-dry strength and rate of slaking of a highly plastic clay subsoil were studied. In all cases the plasticity index and shrinkage were reduced by the treatments. The air-dry strength was lowered in varying degree, which was the only undesirable effect noted. With one exception resistance to slaking was improved. It is concluded that large organic cations show promise as possible stabilizing agents for highly plastic fine-grained soils.