20 resultados para Low cost process


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Most counties have bridges that are no longer adequate, and are faced with large capital expenditure for replacement structures of the same size. In this regard, low water stream crossings (LWSCs) can provide an acceptable, low cost alternative to bridges and culverts on low volume and reduced maintenance level roads. In addition to providing a low cost option for stream crossings, LWSCs have been designed to have the additional benefit of stream bed stabilization. Considerable information on the current status of LWSCs in Iowa, along with insight of needs for design assistance, was gained from a survey of county engineers that was conducted as part of this research (Appendix A). Copies of responses and analysis are included in Appendix B. This document provides guidelines for the design of LWSCs. There are three common types of LWSCs: unvented ford, vented ford with pipes, and low water bridges. Selection among these depends on stream geometry, discharge, importance of road, and budget availability. To minimize exposure to tort liability, local agencies using low water stream crossings should consider adopting reasonable selection and design criteria and certainly provide adequate warning of these structures to road users. The design recommendations included in this report for LWSCs provide guidelines and suggestions for local agency reference. Several design examples of design calculations are included in Appendix E.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Most counties have bridges that are no longer adequate, and are faced with large capital expenditure for replacement structures of the same size. In this regard, low water stream crossings (LWSCs) can provide an acceptable, low cost alternative to bridges and culverts on low volume and reduced maintenance level roads. In addition to providing a low cost option for stream crossings, LWSCs have been designed to have the additional benefit of streambed stabilization. Considerable information on the current status of LWSCs in Iowa, along with insight of needs for design assistance, was gained from a survey of county engineers that was conducted as part of this research (Appendix A). Copies of responses and analysis are included in Appendix B. This document provides guidelines for the design of LWSCs. There are three common types of LWSCs: unvented ford, vented ford with pipes, and low water bridges. Selection among these depends on stream geometry, discharge, importance of road, and budget availability. To minimize exposure to tort liability, local agencies using low water stream crossings should consider adopting reasonable selection and design criteria and certainly provide adequate warning of these structures to road users. The design recommendations included in this report for LWSCs provide guidelines and suggestions for local agency reference. Several design examples of design calculations are included in Appendix E.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The Institute for Transportation (InTrans) at Iowa State University completed work on an in-depth study of crash history on lowvolume, rural roads in Iowa in December 2010. Results indicated that unpaved roads with traffic volumes greater than 100 vehicles per day (vpd) exhibit significantly higher crash frequencies, rates, and densities than any other class of low-volume road examined, paved or unpaved. The total mileage for this class of roadway in Iowa is only about 4,400 miles, spread over 99 counties in the state, which is certainly a manageable number of miles for individual rural agencies. The purpose of this study was to identify and examine several unpaved, local road segments with higher than average crash frequencies, select and undertake potentially-beneficial mitigation, and evaluate the results as time allowed. A variety of low-cost options were considered, including engineering improvements, enhanced efforts by law enforcement, and educational initiatives. Using input, active support, and participation from local agencies and state and Federal safety advocates, the study afforded a unique opportunity to examine useful tools for local rural agencies to utilize in addressing safety on this particular type of roadway.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The Institute for Transportation (InTrans) at Iowa State University completed work on an in-depth study of crash history on lowvolume, rural roads in Iowa in December 2010. Results indicated that unpaved roads with traffic volumes greater than 100 vehicles per day (vpd) exhibit significantly higher crash frequencies, rates, and densities than any other class of low-volume road examined, paved or unpaved. The total mileage for this class of roadway in Iowa is only about 4,400 miles, spread over 99 counties in the state, which is certainly a manageable number of miles for individual rural agencies. The purpose of this study was to identify and examine several unpaved, local road segments with higher than average crash frequencies, select and undertake potentially-beneficial mitigation, and evaluate the results as time allowed. A variety of low-cost options were considered, including engineering improvements, enhanced efforts by law enforcement, and educational initiatives. Using input, active support, and participation from local agencies and state and Federal safety advocates, the study afforded a unique opportunity to examine useful tools for local rural agencies to utilize in addressing safety on this particular type of roadway.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Iowa features an extensive surface transportation system, with more than 110,000 miles of roadway, most of which is under the jurisdiction of local agencies. Given that Iowa is a lower-population state, most of this mileage is located in rural areas that exhibit low traffic volumes of less than 400 vehicles per day. However, these low-volume rural roads also account for about half of all recorded traffic crashes in Iowa, including a high percentage of fatal and major injury crashes. This study was undertaken to examine these crashes, identify major contributing causes, and develop low-cost strategies for reducing the incidence of these crashes. Iowa’s extensive crash and roadway system databases were utilized to obtain needed data. Using descriptive statistics, a test of proportions, and crash modeling, various classes of rural secondary roads were compared to similar state of Iowa controlled roads in crash frequency, severity, density, and rate for numerous selected factors that could contribute to crashes. The results of this study allowed the drawing of conclusions as to common contributing factors for crashes on low-volume rural roads, both paved and unpaved. Due to identified higher crash statistics, particular interest was drawn to unpaved rural roads with traffic volumes greater than 100 vehicles per day. Recommendations for addressing these crashes with low-cost mitigation are also included. Because of the isolated nature of traffic crashes on low-volume roads, a systemic or mass action approach to safety mitigation was recommended for an identified subset of the entire system. In addition, future development of a reliable crash prediction model is described.