19 resultados para Large near exophoria


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The current study was initiated to quantify the stresses induced in critical details on the reinforcing jacket and the tower itself through the use of field instrumentation, load testing, and long-term monitoring. Strain gages were installed on the both the tower and the reinforcing jacket. Additional strain gages were installed on two anchor rods. Tests were conducted with and without the reinforcing jacket installed. Data were collected from all strain gages during static load testing and were used to study the stress distribution of the tower caused by known loads, both with and without the reinforcing jacket. The tower was tested dynamically by first applying a static load, and then quickly releasing the load causing the tower to vibrate freely. Furthermore, the tower was monitored over a period of over 1 year to obtain stress range histograms at the critical details to be used for a fatigue evaluation. Also during the long-term monitoring, triggered time-history data were recorded to study the wind loading phenomena that excite the tower.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The federal government is aggressively promoting biofuels as an answer to global climate change and dependence on imported sources of energy. Iowa has quickly become a leader in the bioeconomy and wind energy production, but meeting the United States Department of Energy’s goal having 20% of U.S. transportation fuels come from biologically based sources by 2030 will require a dramatic increase in ethanol and biodiesel production and distribution. At the same time, much of Iowa’s rural transportation infrastructure is near or beyond its original design life. As Iowa’s rural roadway structures, pavements, and unpaved roadways become structurally deficient or functionally obsolete, public sector maintenance and rehabilitation costs rapidly increase. More importantly, costs to move all farm products will rapidly increase if infrastructure components are allowed to fail; longer hauls, slower turnaround times, and smaller loads result. When these results occur on a large scale, Iowa will start to lose its economic competitive edge in the rapidly developing bioeconomy. The primary objective of this study was to document the current physical and fiscal impacts of Iowa’s existing biofuels and wind power industries. A four-county cluster in north-central Iowa and a two-county cluster in southeast Iowa were identified through a local agency survey as having a large number of diverse facilities and were selected for the traffic and physical impact analysis. The research team investigated the large truck traffic patterns on Iowa’s secondary and local roads from 2002 to 2008 and associated those with the pavement condition and county maintenance expenditures. The impacts were quantified to the extent possible and visualized using geographic information system (GIS) tools. In addition, a traffic and fiscal assessment tool was developed to understand the impact of the development of the biofuels on Iowa’s secondary road system. Recommended changes in public policies relating to the local government and to the administration of those policies included standardizing the reporting and format of all county expenditures, conducting regular pavement evaluations on a county’s system, cooperating and communicating with cities (adjacent to a plant site), considering utilization of tax increment financing (TIF) districts as a short-term tool to produce revenues, and considering alternative ways to tax the industry.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Large Dynamic Message Signs (DMSs) have been increasingly used on freeways, expressways and major arterials to better manage the traffic flow by providing accurate and timely information to drivers. Overhead truss structures are typically employed to support those DMSs allowing them to provide wider display to more lanes. In recent years, there is increasing evidence that the truss structures supporting these large and heavy signs are subjected to much more complex loadings than are typically accounted for in the codified design procedures. Consequently, some of these structures have required frequent inspections, retrofitting, and even premature replacement. Two manufacturing processes are primarily utilized on truss structures - welding and bolting. Recently, cracks at welding toes were reported for the structures employed in some states. Extremely large loads (e.g., due to high winds) could cause brittle fractures, and cyclic vibration (e.g., due to diurnal variation in temperature or due to oscillations in the wind force induced by vortex shedding behind the DMS) may lead to fatigue damage, as these are two major failures for the metallic material. Wind and strain resulting from temperature changes are the main loads that affect the structures during their lifetime. The American Association of State Highway and Transportation Officials (AASHTO) Specification defines the limit loads in dead load, wind load, ice load, and fatigue design for natural wind gust and truck-induced gust. The objectives of this study are to investigate wind and thermal effects in the bridge type overhead DMS truss structures and improve the current design specifications (e.g., for thermal design). In order to accomplish the objective, it is necessary to study structural behavior and detailed strain-stress of the truss structures caused by wind load on the DMS cabinet and thermal load on the truss supporting the DMS cabinet. The study is divided into two parts. The Computational Fluid Dynamics (CFD) component and part of the structural analysis component of the study were conducted at the University of Iowa while the field study and related structural analysis computations were conducted at the Iowa State University. The CFD simulations were used to determine the air-induced forces (wind loads) on the DMS cabinets and the finite element analysis was used to determine the response of the supporting trusses to these pressure forces. The field observation portion consisted of short-term monitoring of several DMS Cabinet/Trusses and long-term monitoring of one DMS Cabinet/Truss. The short-term monitoring was a single (or two) day event in which several message sign panel/trusses were tested. The long-term monitoring field study extended over several months. Analysis of the data focused on trying to identify important behaviors under both ambient and truck induced winds and the effect of daily temperature changes. Results of the CFD investigation, field experiments and structural analysis of the wind induced forces on the DMS cabinets and their effect on the supporting trusses showed that the passage of trucks cannot be responsible for the problems observed to develop at trusses supporting DMS cabinets. Rather the data pointed toward the important effect of the thermal load induced by cyclic (diurnal) variations of the temperature. Thermal influence is not discussed in the specification, either in limit load or fatigue design. Although the frequency of the thermal load is low, results showed that when temperature range is large the restress range would be significant to the structure, especially near welding areas where stress concentrations may occur. Moreover stress amplitude and range are the primary parameters for brittle fracture and fatigue life estimation. Long-term field monitoring of one of the overhead truss structures in Iowa was used as the research baseline to estimate the effects of diurnal temperature changes to fatigue damage. The evaluation of the collected data is an important approach for understanding the structural behavior and for the advancement of future code provisions. Finite element modeling was developed to estimate the strain and stress magnitudes, which were compared with the field monitoring data. Fatigue life of the truss structures was also estimated based on AASHTO specifications and the numerical modeling. The main conclusion of the study is that thermal induced fatigue damage of the truss structures supporting DMS cabinets is likely a significant contributing cause for the cracks observed to develop at such structures. Other probable causes for fatigue damage not investigated in this study are the cyclic oscillations of the total wind load associated with the vortex shedding behind the DMS cabinet at high wind conditions and fabrication tolerances and induced stresses due to fitting of tube to tube connections.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

With over 68 thousand miles of gravel roads in Iowa and the importance of these roads within the farm-to-market transportation system, proper water management becomes critical for maintaining the integrity of the roadway materials. However, the build-up of water within the aggregate subbase can lead to frost boils and ultimately potholes forming at the road surface. The aggregate subbase and subgrade soils under these gravel roads are produced with material opportunistically chosen from local sources near the site and, many times, the compositions of these sublayers are far from ideal in terms of proper water drainage with the full effects of this shortcut not being fully understood. The primary objective of this project was to provide a physically-based model for evaluating the drainability of potential subbase and subgrade materials for gravel roads in Iowa. The Richards equation provided the appropriate framework to study the transient unsaturated flow that usually occurs through the subbase and subgrade of a gravel road. From which, we identified that the saturated hydraulic conductivity, Ks, was a key parameter driving the time to drain of subgrade soils found in Iowa, thus being a good proxy variable for accessing roadway drainability. Using Ks, derived from soil texture, we were able to identify potential problem areas in terms of roadway drainage . It was found that there is a threshold for Ks of 15 cm/day that determines if the roadway will drain efficiently, based on the requirement that the time to drain, Td, the surface roadway layer does not exceed a 2-hr limit. Two of the three highest abundant textures (loam and silty clay loam), which cover nearly 60% of the state of Iowa, were found to have average Td values greater than the 2-hr limit. With such a large percentage of the state at risk for the formation of boils due to the soil with relatively low saturated hydraulic conductivity values, it seems pertinent that we propose alternative design and/or maintenance practices to limit the expensive repair work in Iowa. The addition of drain tiles or French mattresses my help address drainage problems. However, before pursuing this recommendation, a comprehensive cost-benefit analysis is needed.