27 resultados para Green areas
Resumo:
If you have ever flown in an airplane over Iowa, you would see that our woodlands are scattered along the rivers and streams and areas too steep to farm. You would also see a green carpet of trees within out cities and towns. Did you know the 90% of the over 2.7 million acres of forest in Iowa is owned by over 138,000 different private owners? Or that 30% of the land cover in a typical Iowa community if covered by trees? Trees are vital for the protection of our drinking water supply, critical for wildlife habitat, and help sustain employment of over 7,000 Iowans in the wood products industry. This booklet "20 Native trees to Plant" will help you gain a greater knowledge about Iowa's trees and forests. Learn about and enjoy Iowa's trees. Consider ways that you can improve our environment by planting and caring for Iowa's trees and forests.
Resumo:
The Duck Creek Watershed, the recipient of a 2009 DNR Watershed Management Planning Grant and a focus of an upcoming City of Davenport master plan, is characterized by relatively flat grades and highly impervious areas. Plagued by issues such as high bacteria loads, stream bank erosion and flooding, solving these problems may take generations. The City of Davenport has taken a microwatershed approach to identify the significant contributors to water quality and flooding issues that affect Duck Creek, its tributaries and the surrounding landscape to make inroads into the larger issues. This project is the next phase of a multi-phased project that addresses the microwatershed that includes St Ambrose University. Work here will improve water quality within Duck Creek and address major flooding issues on campus while also reducing downstream flooding. This project will convert an existing parking lot into a green parking area by removing the hard surface and installing below ground facilities for storm water infiltration, detention, and reuse. Permeable pavement, bio swales and infiltration areas will be constructed on top of the infiltration facilities. We estimate that this project will capture and treat 1,110,000 gallons (3.5 acre feet) of storm water runoff which accounts to the runoff volume from a 10-year storm event while reducing pollutants by 30-100%.
Determination of Flood Dischard Characteristics of Small Drainage Areas, HR-3, Progress Report, 1960
Resumo:
Project HR-3 of the Iowa Highway Research Board has been active since October 1, 1950. The project objective is the determination of flood discharge characteristics of small drainage areas. Funds for the project amount to $10,000 per year of which, by cooperative agreement, the Highway Commission and the U. S. Geological Survey each furnish $5,000. Previous reports have explained the set-up of the project and these explanations will not be repeated in this report.
Resumo:
The Iowa RCU has developed this selected bibliography of Iowa research in Vocational-Technical Education and related areas. Contract research as well as abstracts of masters theses and doctoral dissertations are included. For the most part, these abstracts have been gleaned from research at the three state universities and Drake University.
Resumo:
This is a supplement to the selected bibliography of Iowa research in Vocational-Technical Education and related areas that the Iowa RCU developed. Contract research as well as abstracts of masters theses and doctoral dissertations are included.
Resumo:
This is supplement no. 2 to the selected bibliography of Iowa research in Vocational-Technical Education and related areas that the Iowa RCU developed. Contract research as well as abstracts of masters theses and doctoral dissertations are included.
Resumo:
It is commonly regarded that the overuse of traffic control devices desensitizes drivers and leads to disrespect, especially for low-volume secondary roads with limited enforcement. The maintenance of traffic signs is also a tort liability concern, exacerbated by unnecessary signs. The Federal Highway Administration’s (FHWA) Manual on Uniform Traffic Control Devices (MUTCD) and the Institute of Transportation Engineer’s (ITE) Traffic Control Devices Handbook provide guidance for the implementation of STOP signs based on expected compliance with right-of-way rules, provision of through traffic flow, context (proximity to other controlled intersections), speed, sight distance, and crash history. The approach(es) to stop is left to engineering judgment and is usually dependent on traffic volume or functional class/continuity of system. Although presently being considered by the National Committee on Traffic Control Devices, traffic volume itself is not given as a criterion for implementation in the MUTCD. STOP signs have been installed at many locations for various reasons which no longer (or perhaps never) met engineering needs. If in fact the presence of STOP signs does not increase safety, removal should be considered. To date, however, no guidance exists for the removal of STOP signs at two-way stop-controlled intersections. The scope of this research is ultra-low-volume (< 150 daily entering vehicles) unpaved intersections in rural agricultural areas of Iowa, where each of the 99 counties may have as many as 300 or more STOP sign pairs. Overall safety performance is examined as a function of a county excessive use factor, developed specifically for this study and based on various volume ranges and terrain as a proxy for sight distance. Four conclusions are supported: (1) there is no statistical difference in the safety performance of ultra-low-volume stop-controlled and uncontrolled intersections for all drivers or for younger and older drivers (although interestingly, older drivers are underrepresented at both types of intersections); (2) compliance with stop control (as indicated by crash performance) does not appear to be affected by the use or excessive use of STOP signs, even when adjusted for volume and a sight distance proxy; (3) crash performance does not appear to be improved by the liberal use of stop control; (4) safety performance of uncontrolled intersections appears to decline relative to stop-controlled intersections above about 150 daily entering vehicles. Subject to adequate sight distance, traffic professionals may wish to consider removal of control below this threshold. The report concludes with a section on methods and legal considerations for safe removal of stop control.
Resumo:
Trench maintenance problems are caused by improper backfill placement and construction procedures. This report is part of a multiphase research project that aims to improve long-term performance of utility cut restoration trenches. The goal of this research is to improve pavement patch life and reduce maintenance of the repaired areas. The objectives were to use field-testing data, laboratory-testing data, and long-term monitoring (elevation survey and falling weight deflectometer testing) to suggest and modify recommendations from Phase I and to identify the principles of trench subsurface settlement and load distribution in utility cut restoration areas by using instrumented trenches. The objectives were accomplished by monitoring local agency utility construction from Phase I, constructing and monitoring the recommended trenches from Phase I, and instrumenting trenches to monitor changes in temperature, pressure, moisture content, and settlement as a function of time to determine the influences of seasonal changes on the utility cut performance.
Resumo:
This research project was intended to produce a strategy for addressing current and future access management problems on state highway routes located just outside urban areas that serve as major routes for commuting into and out of major employment centers in Iowa. There were two basic goals: (1) to develop a ranking system for identifying high-priority segments for access management treatments on primary highways outside metro and urban areas and (2) to focus efforts on routes that are major commuting routes at present and in the future. The project focused on four-lane expressways and two-lane arterials most likely to serve extensive commuter traffic. Available spatial and statistical data were used to identify existing and possible future problem corridors with respect to access management. The research team developed a scheme for ranking commuter routes based on their need for attention to access management. This project was able to produce rankings for corridors based on a variety of factors, including proportion of crashes that appear to be access-related, severity of those crashes, and potential for improvement along corridors. Frequency and loss were found to be highly rank correlated; because of this, these indicators were not used together in developing final priority rankings. Most of the highest ranked routes are on two-lane rural cross sections, but a few are four-lane expressways with at-grade private driveways and public road intersections. The most important conclusion of the ranking system is that many of the poor-performing corridors are located in a single Iowa Department of Transportation district near two urban areas--Des Moines and Ames. A comprehensive approach to managing access along commuting corridors should be developed first in this district since the potential benefits would be highest in that region.
Resumo:
Borrow areas are created where soil is needed to provide fill for construction projects. This research evaluated (1) the changes in row crop productivity resulting from removal of soil for highway construction in Iowa and (2) restoration methods which included: depth of topsoil, subsoil tillage, manure application, and two years of legume growth prior to row cropping. The research was carried out from 1977-1981 at four locations. Corn and soybean y1elds from borrow areas have been below, equal to; and greater than yields from undisturbed, neighboring farmland. Little or no yield increase was noted from restored topsoil at coarse textured sites. At finer textured sites, a marked yield increase of both crops occurred after the addition of 6 inches of topsoil but little added yield increase resulted from restoring 12 inches of topsoil. Subsoil tillage has shown little or no beneficial effect on crop yields. The manure treatment has resulted in a corn yield increase but only in the first year after application.
Resumo:
Borrow areas are created where soil is needed to provide fill for construction projects. The changes in row-crop productivity resulting from removal of soil for highway construction in Iowa and restoration methods, which included addition to topsoil, subsoil tillage, manure application, and 2 yr of legume growth before row cropping, were evaluated. The research was carried out from 1977 to 1981 at four locations. Corn and soybean yields from borrow areas have been below, equal to, and greater than yields from undisturbed neighboring farmland. Little or no yield increase was noted from restored topsoil at coarse-textured sites. At finer-textured sites, a marked yield increase of both crops occurred after the addition of 6 in. of topsoil but little added yield increase resulted from restoring 12 in. of topsoil. Subsoil tillage has shown little or no beneficial effect on crop yields. The manure treatment has resulted in a corn yield increase but only in the first year after application.
Resumo:
The Iowa Department of Public Health (IDPH), Division of Environmental Health, Health Assessment Program gives people information about harmful chemicals and organisms in their environment. Blue-green algae are microscopic organisms that are naturally present in lakes and streams. Some blue-green algae produce toxins that could pose a health risk to people and animals when they are exposed to them in large enough quantities. This fact sheet answers questions about blue-green algae.