39 resultados para Flow of vehicular traffic


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Heavy traffic volumes frequently cause distress in asphalt pavements which were designed under accepted design methods and criteria. The distress appears in the form of rutting in the wheel tracks and rippling or shoving in areas where traffic accelerates or decelerates. Apparently accepted stability test methods alone do not always assure the desired service performance of asphaltic pavements under heavy traffic. The Bituminous Research Laboratory, Engineering Research Institute of Iowa State University undertook the development of a laboratory device by which the resistance of an asphalt paving mix to displacement under traffic might be evaluated, and also be used as a supplemental test to determine adequacy of design of the mix by stability procedures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A study was undertaken by the Bituminous Research Laboratory of the Engineering Research Institute at Iowa State University, under the sponsorship of the Iowa Highway Research Board, project HR 100, to ascertain the effects of a number of characteristics and properties of asphaltic concrete mixes upon the service behavior of the mixes as evaluated by the Traffic Simulator and by field observations. The study included: Investigations of the relations, of gradation, fraction and resistance to wear of aggregates; of stability, cohesion, per cent voids and asphalt content: of a number of laboratory and field mixes to service behavior as indicated by the Traffic Simulator under various test conditions. Based upon the results of the tests and the relationships noted, tentative criteria for the Traffic Simulator test were devised, subject to verification by observations and measurements of field service behavior of the mixes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The State of Iowa has too many roads. Although ranking thirty-fourth in population, twenty-fifth in area, and twentieth in motor vehicle registration, it ranks seventh in the nation in miles of rural roads. In 1920 when Iowa's rural population was 1,528,000, there were 97,440 miles of secondary roads. In 1960 with rural population down 56 percent to 662,000, there were 91,000 miles of secondary roads--a 7 percent decrease. The question has been asked: "Who are these 'service roads' serving?" This excess mileage tends to dissipate road funds at a critical time of increasing public demand for better and safer roads.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It is commonly regarded that the overuse of traffic control devices desensitizes drivers and leads to disrespect, especially for low-volume secondary roads with limited enforcement. The maintenance of traffic signs is also a tort liability concern, exacerbated by unnecessary signs. The Federal Highway Administration’s (FHWA) Manual on Uniform Traffic Control Devices (MUTCD) and the Institute of Transportation Engineer’s (ITE) Traffic Control Devices Handbook provide guidance for the implementation of STOP signs based on expected compliance with right-of-way rules, provision of through traffic flow, context (proximity to other controlled intersections), speed, sight distance, and crash history. The approach(es) to stop is left to engineering judgment and is usually dependent on traffic volume or functional class/continuity of system. Although presently being considered by the National Committee on Traffic Control Devices, traffic volume itself is not given as a criterion for implementation in the MUTCD. STOP signs have been installed at many locations for various reasons which no longer (or perhaps never) met engineering needs. If in fact the presence of STOP signs does not increase safety, removal should be considered. To date, however, no guidance exists for the removal of STOP signs at two-way stop-controlled intersections. The scope of this research is ultra-low-volume (< 150 daily entering vehicles) unpaved intersections in rural agricultural areas of Iowa, where each of the 99 counties may have as many as 300 or more STOP sign pairs. Overall safety performance is examined as a function of a county excessive use factor, developed specifically for this study and based on various volume ranges and terrain as a proxy for sight distance. Four conclusions are supported: (1) there is no statistical difference in the safety performance of ultra-low-volume stop-controlled and uncontrolled intersections for all drivers or for younger and older drivers (although interestingly, older drivers are underrepresented at both types of intersections); (2) compliance with stop control (as indicated by crash performance) does not appear to be affected by the use or excessive use of STOP signs, even when adjusted for volume and a sight distance proxy; (3) crash performance does not appear to be improved by the liberal use of stop control; (4) safety performance of uncontrolled intersections appears to decline relative to stop-controlled intersections above about 150 daily entering vehicles. Subject to adequate sight distance, traffic professionals may wish to consider removal of control below this threshold. The report concludes with a section on methods and legal considerations for safe removal of stop control.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It is commonly regarded that the overuse of traffic control devices desensitizes drivers and leads to disrespect, especially for low-volume secondary roads with limited enforcement. The maintenance of traffic signs is also a tort liability concern, exacerbated by unnecessary signs. The Federal Highway Administration’s (FHWA) Manual on Uniform Traffic Control Devices (MUTCD) and the Institute of Transportation Engineer’s (ITE) Traffic Control Devices Handbook provide guidance for the implementation of STOP signs based on expected compliance with right-of-way rules, provision of through traffic flow, context (proximity to other controlled intersections), speed, sight distance, and crash history. The approach(es) to stop is left to engineering judgment and is usually dependent on traffic volume or functional class/continuity of system. Although presently being considered by the National Committee on Traffic Control Devices, traffic volume itself is not given as a criterion for implementation in the MUTCD. STOP signs have been installed at many locations for various reasons which no longer (or perhaps never) met engineering needs. If in fact the presence of STOP signs does not increase safety, removal should be considered. To date, however, no guidance exists for the removal of STOP signs at two-way stop-controlled intersections. The scope of this research is ultra-low-volume (< 150 daily entering vehicles) unpaved intersections in rural agricultural areas of Iowa, where each of the 99 counties may have as many as 300 or more STOP sign pairs. Overall safety performance is examined as a function of a county excessive use factor, developed specifically for this study and based on various volume ranges and terrain as a proxy for sight distance. Four conclusions are supported: (1) there is no statistical difference in the safety performance of ultra-low-volume stop-controlled and uncontrolled intersections for all drivers or for younger and older drivers (although interestingly, older drivers are underrepresented at both types of intersections); (2) compliance with stop control (as indicated by crash performance) does not appear to be affected by the use or excessive use of STOP signs, even when adjusted for volume and a sight distance proxy; (3) crash performance does not appear to be improved by the liberal use of stop control; (4) safety performance of uncontrolled intersections appears to decline relative to stop-controlled intersections above about 150 daily entering vehicles. Subject to adequate sight distance, traffic professionals may wish to consider removal of control below this threshold. The report concludes with a section on methods and legal considerations for safe removal of stop control.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Several factors influence a driver’s decision to travel, choice of vehicle speed, and the safety of a particular trip. These factors include, among others, the trip purpose, time of day, traffic volumes, weather and roadway conditions, and the range of vehicle speeds on the roadway. The main goal of the research project summarized in this report was the investigation of winter storm event impacts on the volume, safety, and speed characteristics of interstate traffic flow.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Portable (roll-out) stop signs are used at school crossings in over 300 cities in Iowa. Their use conforms to the Code of Iowa, although it is not consistent with the provisions of the Manual on Uniform Traffic Control Devices adopted for nationwide application. A survey indicated that most users in Iowa believe that portable stop signs provide effective protection at school crossings, and favor their continued use. Other non-uniform signs that fold or rotate to display a STOP message only during certain hours are used at school crossings in over 60 cities in Iowa. Their use does not conform to either the Code of Iowa or the Manual on Uniform Traffic Control Devices. Users of these devices also tend to favor their continued use. A survey of other states indicated that use of temporary devices similar to those used in Iowa is not generally sanctioned. Some unsanctioned use apparently occurs in several states, however. A different type of portable stop sign for school crossings is authorized and widely used in one state. Portable stop signs similar to those used in Iowa are authorized in another state, although their use is quite limited. A few reports in the literature reviewed for this research discussed the use of portable stop signs. The authors of these reports uniformly recommended against the use of portable or temporary traffic control devices. Various reasons for this recommendation were given, although data to support the recommendation were not offered. As part of this research, field surveys were conducted at 54 locations in 33 communities where temporary stop control devices were in use at school crossings. Research personnel observed the obedience to stop control and measured the vehicular delay incurred. Stopped delay averaged 1.89 seconds/entering vehicle. Only 36.6 percent of the vehicles were observed to come to a complete stop at the study locations controlled by temporary stop control devices. However, this level of obedience does not differ from that observed at intersections controlled by permanent stop signs. Accident experience was compiled for 76 intersections in 33 communities in Iowa where temporary stop signs were used and, for comparative purposes, at 76 comparable intersections having other forms of control or operating without stop control. There were no significant differences in accident experience An economic analysis of vehicle operating costs, delay costs, and other costs indicated that temporary stop control generated costs only about 12 percent as great as permanent stop control for a street having a school crossing. Midblock pedestrian-actuated signals were shown to be cost effective in comparison with temporary stop signs under the conditions of use assumed. Such signals could be used effectively at a number of locations where temporary stop signs are being used. The results of this research do not provide a basis for recommending that use of portable stop signs be prohibited. However, erratic patterns of use of these devices and inadequate designs suggest that improved standards for their use are needed. Accordingly, nine recommendations are presented to enhance the efficiency of vehicular flow at school crossings, without causing a decline in the level of pedestrian protection being afforded.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This final report contains two separate reports which describe the retroreflectivity levels of various traffic signs and pavement markings on the Iowa primary road system. The data was collected in the fall/winter of 1994 and given to the Federal Highway Administration in March of 1995. This information is currently being combined with similar information from other jurisdictions across the country for the purpose of determining the impact of mandated minimum retroreflectivity levels. The FHWA will be releasing their report sometime in 1996. In October 1992, Congress mandated (Public Law 102-388) the Secretary of Transportation to revise the Manual of Uniform Traffic Control Devices to include a minimum level of retroreflectivity for pavement markings and traffic signs which shall apply to all roads open to public travel. In 1994, the FHWA initiated research studies to determine the retroreflectivity levels which currently exist for signs and markings in an attempt to develop standards which are reasonable to implement. The Iowa Department of Transportation participated in both of the studies and the final reports are included. After compilation and analysis of the collected retroreflectivity data, the FHWA will propose the new MUTCD standards through the federal rule making process. It is estimated that the actual MUTCD change will occur sometime in late 1997 or early 1998.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In jointed portland cement concrete pavements, dowel bars are typically used to transfer loads between adjacent slabs. A common practice is for designers to place dowel bars at a certain, consistent spacing such that a sufficient number of dowels are available to effectively transfer anticipated loads. In many cases, however, the standards developed today for new highway construction simply do not reflect the design needs of low traffic volume, rural roads. The objective of this research was to evaluate the impact of the number of dowel bars and dowel location on joint performance and ultimately on pavement performance. For this research, test sections were designed, constructed, and tested in actual field service pavement. Test sections were developed to include areas with load transfer assemblies having three and four dowels in the outer wheel path only, areas with no joint reinforcement whatsoever, and full lane dowel basket assemblies as the control. Two adjacent paving projects provided both rural and urban settings and differing base materials. This report documents the approach to implementing the study and provides discussion and suggestions based on the results of the research. The research results indicate that the use of single three or four dowel basket assemblies in the outer wheel path is acceptable for use in low truck volume roads. In the case of roadways with relatively stiff bases such as asphalt treated or stabilized bases, the use of the three dowel bar pattern in the outside wheel path is expected to provide adequate performance over the design life of the pavement. In the case of untreated or granular bases, the results indicate that the use of the three or four dowel bar basket in both wheel paths provides the best long-term solution to load transfer and faulting measurements.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Efforts to improve safety and traffic flow through merge areas on high volume/high speed roadways have included early merge and late merge concepts and several studies of the effectiveness of these concepts, many using Intelligent Transportation Systems for implementation. The Iowa Department of Transportation (Iowa DOT) planned to employ a system of dynamic message signs (DMS) to enhance standard temporary traffic control for lane closures and traffic merges at two bridge construction projects in western Iowa (Adair County and Cass County counties) on I-80 during the 2008 construction season. To evaluate the DMS system’s effectiveness for impacting driver merging actions, the Iowa DOT contracted with Iowa State University’s Center for Transportation Research and Education to perform the evaluation and make recommendations for future use of this system based on the results. Data were collected over four weekends, beginning August 1–4 and ending October 16–20, 2008. Two weekends yielded sufficient data for evaluation, one of transition traffic flow and the other with a period of congestion. For both of these periods, a statistical review of collected data did not indicate a significant impact on driver merging actions when the DMS messaging was activated as compared to free flow conditions with no messaging. Collection of relevant project data proved to be problematic for several reasons. In addition to personnel safety issues associated with the placement and retrieval of counting devices on a high speed roadway, unsatisfactory equipment performance and insufficient congestion to activate the DMS messaging hampered efforts. A review of the data that was collected revealed different results taken by the tube counters compared to the older model plate counters. Although variations were not significant from a practical standpoint, a statistical evaluation showed that the data, including volumes, speeds, and classifications from the two sources were not comparable at a 95% level of confidence. Comparison of data from the Iowa DOT’s automated traffic recorders (ATRs) in the area also suggested variations in results from these data collection systems. Additional comparison studies were recommended.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nationwide, over 1,000 fatalities and 40,000 injuries occur annually in work zones, which include both construction zones and areas where maintenance is performed. The majority (85%) of work zone accidents result from unsafe driver behavior, and vehicle speed is often a factor in work zone crashes. In order to address speed and driver behavior near work zones, roadway agencies have developed different traffic calming measures. The objective of this research is to summarize the effectiveness of different traffic calming treatments for reducing speeds in work zones. This project 1. identified work zone traffic calming treatments for which information has not been well summarized, 2. identified state of the art and new technologies for work zone traffic calming, and 3. synthesized research related to items 1 and 2

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Iowa Department of Transportation, like many other state transportation agencies, is experiencing growing congestion and traffic delays in work zones on rural interstate highways. The congestion results in unproductive and wasteful delays for both motorists and commercial vehicles. It also results in hazardous conditions where vehicle stopped in queues on rural interstate highways are being approached by vehicles upstream at very high speeds. The delays also result in driver frustration, making some drivers willing to take unsafe risks in an effort to bypass delays. To reduce the safety hazards and unproductive delays of congested rural interstate work zones, the Iowa Department of Transportation would like to improve its traffic management strategies at these locations. Applying better management practices requires knowledge of the traffic flow properties and driver behavior in and around work zones, and knowledge of possible management strategies. The project reported here and in a companion report documents research which seeks to better understand traffic flow behavior at rural interstate highway work zones and to estimate the traffic carrying capacity of work zone lane closures. In addition, this document also reports on technology available to better manage traffic in and around work zones.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Highway noise is one of the most pressing of the surface characteristics issues facing the concrete paving industry. This is particularly true in urban areas, where not only is there a higher population density near major thoroughfares, but also a greater volume of commuter traffic (Sandberg and Ejsmont 2002; van Keulen 2004). To help address this issue, the National Concrete Pavement Technology Center (CP Tech Center) at Iowa State University (ISU), Federal Highway Administration (FHWA), American Concrete Pavement Association (ACPA), and other organizations have partnered to conduct a multi-part, seven-year Concrete Pavement Surface Characteristics Project. This document contains the results of Part 1, Task 2, of the ISU-FHWA project, addressing the noise issue by evaluating conventional and innovative concrete pavement noise reduction methods. The first objective of this task was to determine what if any concrete surface textures currently constructed in the United States or Europe were considered quiet, had long-term friction characteristics, could be consistently built, and were cost effective. Any specifications of such concrete textures would be included in this report. The second objective was to determine whether any promising new concrete pavement surfaces to control tire-pavement noise and friction were in the development stage and, if so, what further research was necessary. The final objective was to identify measurement techniques used in the evaluation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Today, many of Iowa’s counties are experiencing an increase in rural development. Two specific types of development were focused on for this research: rural residential subdivisions and livestock production operations. Rural residential developments are primarily year round single-family homes, though some are vacation homes. Livestock production in Iowa includes hog, beef, and poultry facilities. These two types of rural development, while obviously very different in nature and incompatible with each other, share one important characteristic: They each generate substantial amounts of new traffic for Iowa’s extensive secondary road system. This research brings together economic, spatial, and legal analysis methods to address the impacts of rural development on the secondary road system and provide county engineers, county supervisors, and state legislators with guidance in addressing the challenges associated with this development.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

There have been a multitude of programs providing assistance to the state of Iowa in the past 18 months. Springtime 2008 disasters resulted in tornado damage and widespread flood damage to large fractions of the state. In consequence, there was a very large flow of federal and state resources dedicated to assisting community and statewide recovery efforts. The nation was in recession as well and continued to be in recession through much of 2009. A sizeable amount of assistance found its way to Iowa under the American Recovery and Reinvestment Act of 2009 in the forms of infrastructure stimulus spending, income supports and other safety net spending for households, and stabilization assistance for essential public services like education. On top of that, the state of Iowa authorized the I Jobs program as an additional infrastructure development program, and as a jobs stimulus program. The total amount of spending for all types of programs, disaster or economic recovery related, is perhaps as high as $7.5 billion over the next few years.