20 resultados para Feature evaluation and selection
Resumo:
This project included the following tasks: (1) Preparation of a questionnaire and survey of all 99 Iowa county engineers for input on current surfacing material practice; (2) County survey data analysis and selection of surfacing materials gradations to be used for test road construction; (3) Solicitation of county engineers and stone producers for project participation; (4) Field inspection and selection of the test road; (5) Construction of test road using varying material gradations from a single source; and (6) Field and laboratory testing and test road monitoring. The results of this research project indicate that crushed stone surfacing material graded on the fine side of Iowa Department of Transportation Class A surfacing specifications provides lower roughness and better rideability; better braking and handling characteristics; and less dust generation than the coarser gradations. It is believed that this material has sufficient fines available to act as a binder for the coarser material, which in turn promotes the formation of tight surface crust. This crust acts to provide a smooth riding surface, reduces dust generation, and improves vehicle braking and handling characteristics.
Resumo:
The Center for Transportation Research and Education (CTRE) used the traffic simulation model CORSIM to access proposed capacity and safety improvement strategies for the U.S. 61 corridor through Burlington, Iowa. The comparison between the base and alternative models allow for evaluation of the traffic flow performance under the existing conditions as well as other design scenarios. The models also provide visualization of performance for interpretation by technical staff, public policy makers, and the public. The objectives of this project are to evaluate the use of traffic simulation models for future use by the Iowa Department of Transportation (DOT) and to develop procedures for employing simulation modeling to conduct the analysis of alternative designs. This report presents both the findings of the U.S. 61 evaluation and an overview of model development procedures. The first part of the report includes the simulation modeling development procedures. The simulation analysis is illustrated through the Burlington U.S. 61 corridor case study application. Part I is not intended to be a user manual but simply introductory guidelines for traffic simulation modeling. Part II of the report evaluates the proposed improvement concepts in a side by side comparison of the base and alternative models.
Resumo:
Most local agencies in Iowa currently make their pavement treatment decisions based on their limited experience due primarily to lack of a systematic decision-making framework and a decision-aid tool. The lack of objective condition assessment data of agency pavements also contributes to this problem. This study developed a systematic pavement treatment selection framework for local agencies to assist them in selecting the most appropriate treatment and to help justify their maintenance and rehabilitation decisions. The framework is based on an extensive literature review of the various pavement treatment techniques in terms of their technical applicability and limitations, meaningful practices of neighboring states, and the results of a survey of local agencies. The treatment selection framework involves three different steps: pavement condition assessment, selection of technically feasible treatments using decision trees, and selection of the most appropriate treatment considering the return-on-investment (ROI) and other non-economic factors. An Excel-based spreadsheet tool that automates the treatment selection framework was also developed, along with a standalone user guide for the tool. The Pavement Treatment Selection Tool (PTST) for Local Agencies allows users to enter the severity and extent levels of existing distresses and then, recommends a set of technically feasible treatments. The tool also evaluates the ROI of each feasible treatment and, if necessary, it can also evaluate the non-economic value of each treatment option to help determine the most appropriate treatment for the pavement. It is expected that the framework and tool will help local agencies improve their pavement asset management practices significantly and make better economic and defensible decisions on pavement treatment selection.
Resumo:
This report synthesizes the safety corridor programs of 13 states that currently have some type of program: Alaska, California, Florida, Kentucky, Minnesota, New Jersey, New Mexico, New York, Ohio, Oregon, Pennsylvania, Virginia, and Washington. This synthesis can help Midwestern states implement their own safety corridor programs and select pilot corridors or enhance existing corridors. Survey and interview information about the states’ programs was gathered from members of each state department of transportation (DOT) and Federal Highway Administration (FHWA) division office. Topics discussed included definitions of a safety corridor; length and number of corridors in the program; criteria for selection of a corridor; measures of effectiveness of an implemented safety corridor; organizational structure of the program; funding and legislation issues; and engineering, education, enforcement, and emergency medical service strategies. Safety corridor programs with successful results were then examined in more detail, and field visits were made to Kansas, Oregon, Pennsylvania, and Washington for first-hand observations. With the survey and field visit information, several characteristics of successful safety corridor programs were identified, including multidisciplinary (3E and 4E) efforts; selection, evaluation, and decommissioning strategies; organization structure, champions, and funding; task forces and Corridor Safety Action Plans; road safety audits; and legislation and other safety issues. Based on the synthesis, the report makes recommendations for establishing and maintaining a successful safety corridor program.
Resumo:
This main report provides a general discussion of the load testing, structural evaluation, and load rating procedures. Specific details for each bridge are provided in individual report sections. Additional supporting information on load testing, analyses, and load rating are also provided in the attached appendices.