21 resultados para FATIGUE-STRENGTH
Resumo:
The interrelation of curing time, curing temperature, strength, and reactions in lime-bentonite-water mixtures was examined. Samples were molded at constant density and moisture content and then cured for periods of from 1 to 56 days at constant temperatures that ranged from 5C to 60C. After the appropriate curing time the samples were tested for unconfined compressive strength. The broken samples were then analyzed by x-ray diffractometer and spectrophotometer to determine the identity of the reaction products present after each curing period. It was found that the strength gain of lime-clay mixtures cured at different temperatures is due to different phases of the complex reaction, lime & clay to CSH(gel) to CSH(II) to CSH(I) to tobermorite. The farther the reaction proceeds, the higher the strength. There was also evidence of lattice substitutions in the structure of the calcium silicate hydrates at curing temperatures of 50C and higher. No consistent relationship between time, temperature, strength, and the S/A ration of reaction products existed, but in order to achieve high strengths the apparent C/S ration had to be less than two. The curing temperature had an effect on the strength developed by a given amount of reacted silica in the cured lime-clay mixture, but at a given curing temperature the cured sample that had the largest amount of reacted silica gave the highest strength. Evidence was found to indicate that during the clay reaction some calcium is indeed adsorbed onto the clay structure rather than entering into a pozzolanic reaction. Finally, it was determined that it is possible to determine the amount of silica and alumina in lime-clay reaction products by spectrophotometric analysis with sufficient accuracy for comparison purposes. The spectrophotometric analysis techniques used during the investigation were simple and were not time consuming.
Resumo:
A new method was developed for breaking high strength prestressed cable. The old method used an aluminum oxide grit packed into a special gripping jaw. The new method uses aluminum shims wrapped around the cable and then is gripped with a V-grip. The new method gives nearly 100% "good breaks" on the cable compared to approximately 10% good breaks with the old method. In addition, the new cable breaking method gives higher ultimate tensile strengths, is more reproducible, is quicker, cleaner and easier on equipment.
Resumo:
In recent years, various types of organic and inorganic materials have been investigated for use as soil stabilizing agents in the construction of highways and airports. Since the properties and environmental conditions of soils vary so greatly from place to place, a stabilizing agent that is suitable for one type of soil may not be satisfactory for another. As a result, it is often desirable to evaluate several stabilizing agents under varying treatment conditions before deciding on a specific one to be used with a given soil. In addition many research programs have been initiated which investigate the effects of these stabilizing agents upon soils.
Resumo:
The effect of curing temperature, in the range of 4.4 to 22.8 degrees C (40 to 73 degrees F), on strength development was studied based on the maturity and pulse velocity measurements in this report. The strength-maturity relationships for various mixes using a Type I cement and using a Type IP cement, respectively, were experimentally developed. The similar curves for early age strength development of both the patching concrete, using a Type I cement with the addition of calcium chloride, and the fast track concrete, using a Type III cement and fly ash, have also been proposed. For the temperature ranges studied, the strength development of concrete can be determined using a pulse velocity measurement, but only for early ages up to 24 hours. These obtained relationships can be used to determine when a pavement can be opened to traffic. The amount of fly ash substitution, up to 30%, did not have a significant influence on the strength-maturity relationship.
Resumo:
To provide insight into subgrade non-uniformity and its effects on pavement performance, this study investigated the influence of non-uniform subgrade support on pavement responses (stress and deflection) that affect pavement performance. Several reconstructed PCC pavement projects in Iowa were studied to document and evaluate the influence of subgrade/subbase non-uniformity on pavement performance. In situ field tests were performed at 12 sites to determine the subgrade/subbase engineering properties and develop a database of engineering parameter values for statistical and numerical analysis. Results of stiffness, moisture and density, strength, and soil classification were used to determine the spatial variability of a given property. Natural subgrade soils, fly ash-stabilized subgrade, reclaimed hydrated fly ash subbase, and granular subbase were studied. The influence of the spatial variability of subgrade/subbase on pavement performance was then evaluated by modeling the elastic properties of the pavement and subgrade using the ISLAB2000 finite element analysis program. A major conclusion from this study is that non-uniform subgrade/subbase stiffness increases localized deflections and causes principal stress concentrations in the pavement, which can lead to fatigue cracking and other types of pavement distresses. Field data show that hydrated fly ash, self-cementing fly ash-stabilized subgrade, and granular subbases exhibit lower variability than natural subgrade soils. Pavement life should be increased through the use of more uniform subgrade support. Subgrade/subbase construction in the future should consider uniformity as a key to long-term pavement performance.
Resumo:
The current means and methods of verifying that high-strength bolts have been properly tightened are very laborious and time consuming. In some cases, the techniques require special equipment and, in other cases, the verification itself may be somewhat subjective. While some commercially available verification techniques do exist, these options still have some limitations and might be considered costly options. The main objectives of this project were to explore high-strength bolt-tightening and verification techniques and to investigate the feasibility of developing and implementing new alternatives. A literature search and a survey of state departments of transportation (DOTs) were conducted to collect information on various bolt-tightening techniques such that an understanding of available and under-development techniques could be obtained. During the literature review, the requirements for materials, inspection, and installation methods outlined in the Research Council on Structural Connections specification were also reviewed and summarized. To guide the search for finding new alternatives and technology development, a working group meeting was held at the Iowa State University Institute for Transportation October 12, 2015. During the meeting, topics central to the research were discussed with Iowa DOT engineers and other professionals who have relevant experiences.