43 resultados para Excessive daytime sleepiness


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The earliest overall comprehensive work on the use of fly ash in concrete was reported by Davis and Associates of the University of California in 1937. Since that time there have been numerous applications of the use and varying proportions of fly ash in portland cement concrete mixes. Fly ash is a pozzolanic powdery by-product of the coal combustion process which is recovered from flue gases and is generally associated with electric power generating plants. Environmental regulations enacted in recent years have required that fly ash be removed from the flue gases to maintain clean air standards. This has resulted in an increased volume of high quality fly ash that is considered a waste product or a by-product that can be utilized in products such as portland cement concrete. There are several sources of the high quality fly ash located in Iowa currently producing a combined total of 281,000 tons of material annually. Due to recent cement shortages and the rapidly increasing highway construction costs, the Iowa Department of Transportation has become interested in utilizing fly ash in portland cement concrete paving mixes. A preliminary review of the Iowa Department of Transportation Materials Laboratory study indicates that a substitution of fly ash for portland cement, within limits, is ·not detrimental to the overall concrete quality. Also the use of fly ash in concrete would reduce the cement consumption as well as provide a potential cost savings in areas where high quality fly ash is available without excessive transportation costs. The previously expressed concerns have shown the need for a research project to develop our knowledge of fly ash replacement in the Iowa Department of Transportation portland cement concrete paving mixes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Portland Cement Concrete (PCC) pavement has served the State of Iowa well for many years. The oldest Iowa pavement was placed in LeMars in 1904. Beginning in 1931, many miles of PCC pavement were built to "get out of the mud". Many of these early pavements provided good performance without deterioration for more than 50 years. In the late 1950s, Iowa was faced with severe PCC pavement deterioration called D cracking. Research identified the cause of this deterioration as crushed limestone containing a bad pore system. Selective quarrying and ledge control has alleviated this problem. In 1990, cracking deterioration was identified on a three-year-old pavement on US 20 in central Iowa. The coarse aggregate was a crushed limestone with an excellent history of performance in PCC pavement. Examination of cores showed very few cracks through the coarse aggregate particles. The cracks were predominately confined to the matrix. The deterioration was identified as alkali-silica reactivity (ASR) by a consultant. To investigate the cause of the deterioration, the Iowa DOT and Iowa State University jointly purchased a high resolution, low vacuum Hitachi Scanning Electron Microscope (SEM) with an energy dispersion detector. Subsequent evaluation identified no concentration of silica gel (silicon-Si), but did identify substantial amounts of sulfur-S and aluminum-AL (assumed to be ettringite) in the air voids. Some of these voids have cracks radiating from them leading us to conclude that the ettringite filled voids were a center of pressure causing the crack. The ettringite in the voids, after being subjected to sodium chloride (NaCl), initially swells and then dissolves. This low vacuum SEM research of PCC pavement deterioration supports the following conclusions: (1) A low vacuum SEM and an energy dispersion detector are very important for proper evaluation of PCC pavement deterioration; (2) There are instances today where PCC pavement deterioration is mistakenly identified as ASR; (3) Ettringite initially expands when subjected to NaCl; and the ettringite filled voids are a center-of-pressure that cracks the PCC; and (4) The deterioration of some current premature PCC pavement distress locations is caused by factors related to the formation of excessive ettringite.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Iowa Department of Transportation has noticed an increase in the occurrence of excessively vibrated portland cement concrete (PCC) pavements. The overconsolidation of PCC pavements can be observed in several sections of PCC highways across the state of Iowa. Also, excessive vibration is believed to be a factor in the premature deterioration of several pavements in Iowa. To address the problem of excessive vibration, a research project was conducted to document the vibratory practices of PCC slipform paving in Iowa and determine the effect of vibration on the air content of pavement. The primary factors studied were paver speed, vibrator frequency, and air content relative to the location of the vibrator. The study concluded that the Iowa Department of Transportation specification of 5000 and 8000 vibrations per minute (vpm) for slipform pavers is effective for normal paver speeds observed on the three test paving projects. Excessive vibration was clearly identified on one project where a vibrator frequency was found to be 12,000 vpm. When the paver speed was reduced to half the normal speed, hard air contents indicated that excessive vibration was beginning to occur in the localized area immediately surrounding the vibrator at a frequency of 8000 vpm. Analysis of variance testing indicated many variables and interactions to be significant at a 95% confidence level; however, the variables and interactions that were found to be significant varied from project to project. This affirms the complexity of the process for consolidating PCC.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Iowa Department of Transportation has discovered an increase in the occurrence of excessively vibrated portland cement concrete (PCC) pavements. The overconsolidation of PCC pavements has been observed in several projects across the state. Overconsolidation is also believed to be a factor in acceleration of premature deterioration of at least two pavement projects in Iowa. To address the problem, a research project in 1995 documented the vibratory practices of PCC slipform paving in Iowa in order to determine the effect of vibration on consolidation and air content of pavement. Paver speed, vibrator frequency, and air content relative to the location of the vibrator were studied. The study concluded that the Iowa Department of Transportation specification of 5,000 to 8,000 vibrations per minute (vpm) for slipform pavers is effective for normal paver speeds on the three projects that were examined. Excessive vibration was clearly identified on one project where a vibrator frequency of 12,000 vpm was discovered. When the paver speed was reduced to half the normal speed, hard air contents indicate that excessive vibration was beginning to occur in the localized area immediately surrounding the vibrator at a frequency of 8,000 vpm. The study also indicates that the radius of influence of the vibrators is smaller than has been claimed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Iowa Department of Transportation Materials Laboratory personnel developed a process to produce a road deicer consisting of sand grains coated with calcium magnesium acetate (CMA). Research project HR-253 was established to explore commercial production of the CMA/sand deicer by an independent contractor. About 60 tons of the deicer was produced at a ready-mix concrete facility and evaluated in the field during the 1983-1984 winter season. The initial contracted production of CMA/sand deicer under research project HR-253 identified two major problems: (1) excessive unreacted lime in the final product, and (2) formation of spherical lumps within the product requiring subsequent size reduction. It was recommended in the HR-253 report that additional deicer be produced as a continuation of the project in order to address these problems and further develop the production process. A contract was negotiated with W. G. Block Co. to produce and deliver 50 tons of additional deicer. This addendum report covers this production effort including descriptions and results of all modifications of equipment and process procedures used.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Stopping and turning maneuvers on high traffic volume asphalt cement concrete surfaced roads and streets often causes distortion of the pavement. Distortion may show up as excessive rutting in the wheel path, shoving of the pavement and/or rippling of the surface. Often times repeated corrective work such as cold milling or heater planing is required in these areas to maintain the pavement surface in a reasonable condition. In recent years polymer additives have been developed for asphalt cement concrete paving mixes that show promise in improving the inplace stability of the pavements. AC-13 (Styrelf 13) available from Bitucote Products Company, St. Louis, Missouri is an asphalt cement that has been modified by an additive to exhibit characteristics of very high stability in asphalt mixes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The stability of air bubbles in fresh concrete can have a profound influence of the potential durability of the system, because excessive losses during placement and consolidation can compromise the ability of the mixture to resist freezing and thawing. The stability of air void systems developed by some air entraining admixtures (AEAs) could be affected by the presence of some polycarboxylate-based water reducing admixtures (WRAs). The foam drainage test provides a means of measuring the potential stability of air bubbles in a paste. A barrier to acceptance of the test was that there was little investigation of the correlation with field performance. The work reported here was a limited exercise seeking to observe the stability of a range of currently available AEA/WRA combinations in the foam drainage test; then, to take the best and the worst and observe their stabilities on concrete mixtures in the lab. Based on the data collected, the foam drainage test appears to identify stable combinations of AEA and WRA.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sodium and potassium are the common alkalis present in fly ash. Excessive amounts of fly ash alkalis can cause efflorescence problems in concrete products and raise concern about the effectiveness of the fly ash to mitigate alkali-silica reaction (ASR). The available alkali test, which is commonly used to measure fly ash alkali, takes approximately 35 days for execution and reporting. Hence, in many instances the fly ash has already been incorporated into concrete before the test results are available. This complicates the job of the fly ash marketing agencies and it leads to disputes with fly ash users who often are concerned with accepting projects that contain materials that fail to meet specification limits. The research project consisted of a lab study and a field study. The lab study focused on the available alkali test and how fly ash alkali content impacts common performance tests (mortar-bar expansion tests). Twenty-one fly ash samples were evaluated during the testing. The field study focused on the inspection and testing of selected, well documented pavement sites that contained moderately reactive fine aggregate and high-alkali fly ash. A total of nine pavement sites were evaluated. Two of the sites were control sites that did not contain fly ash. The results of the lab study indicated that the available alkali test is prone to experimental errors that cause poor agreement between testing labs. A strong (linear) relationship was observed between available alkali content and total alkali content of Class C fly ash. This relationship can be used to provide a quicker, more precise method of estimating the available alkali content. The results of the field study failed to link the use of high-alkali fly ash with the occurrence of ASR in the various concrete sites. Petrographic examination of the pavement cores indicated that Wayland sand is an ASR-sensitive aggregate. This was in good agreement with Iowa DOT field service records. It was recommended that preventative measures should be used when this source of sand is used in concrete mixtures.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

It is generally accepted that high density polyethylene pipe (HDPE) performs well under live loads with shallow cover, provided the backfill is well compacted. Although industry standards require carefully compacted backfill, poor inspection and/or faulty construction may result in soils that provide inadequate restraint at the springlines of the pipes thereby causing failure. The objectives of this study were: 1) to experimentally define a lower limit of compaction under which the pipes perform satisfactorily, 2) to quantify the increase in soil support as compaction effort increases, 3) to evaluate pipe response for loads applied near the ends of the buried pipes, 4) to determine minimum depths of cover for a variety of pipes and soil conditions by analytically expanding the experimental results through the use of the finite element program CANDE. The test procedures used here are conservative especially for low-density fills loaded to high contact stresses. The failures observed in these tests were the combined effect of soil bearing capacity at the soil surface and localized wall bending of the pipes. Under a pavement system, the pipes' performance would be expected to be considerably better. With those caveats, the following conclusions are drawn from this study. Glacial till compacted to 50% and 80% provides insufficient support; pipe failureoccurs at surface contact stresses lower than those induced by highway trucks. On the other hand, sand backfill compacted to more than 110 pcf (17.3 kN/m3) is satisfactory. The failure mode for all pipes with all backfills is localized wall bending. At moderate tire pressures, i.e. contact stresses, deflections are reduced significantly when backfill density is increased from about 50 pcf (7.9 kN/m^3) to 90 pcf (14.1 kN/m^3). Above that unit weight, little improvement in the soil-pipe system is observed. Although pipe stiffness may vary as much as 16%, analyses show that backfill density is more important than pipe stiffness in controlling both deflections at low pipe stresses and at the ultimate capacity of the soil-pipe system. The rate of increase in ultimate strength of the system increases nearly linearly with increasing backfill density. When loads equivalent to moderate tire pressures are applied near the ends of the pipes, pipe deflections are slighly higher than when loaded at the center. Except for low density glacial till, the deflections near the ends are not excessive and the pipes perform satisfactorily. For contact stresses near the upper limit of truck tire pressures and when loaded near the end, pipes fail with localized wall bending. For flowable fill backfill, the ultimate capacity of the pipes is nearly doubled and at the upper limit of highway truck tire pressures, deflections are negligible. All pipe specimens tested at ambient laboratory room temperatures satisfied AASHTO minimum pipe stiffness requirements at 5% deflection. However, nearly all specimens tested at elevated pipe surface temperatures, approximately 122°F (50°C), failed to meet these requirements. Some HDPE pipe installations may not meet AASHTO minimum pipe stiffness requirements when installed in the summer months (i.e. if pipe surface temperatures are allowed to attain temperatures similar to those tested here). Heating of any portion of the pipe circumference reduced the load carrying capacity of specimens. The minimum soil cover depths, determined from the CANOE analysis, are controlled by the 5% deflection criterion. The minimum soil cover height is 12 in. (305 mm). Pipes with the poor silt and clay backfills with less than 85% compaction require a minimum soil cover height of 24 in. (610 mm). For the sand at 80% compaction, the A36 HDPE pipe with the lowest moment of inertia requires a minimum of 24 in. (610 mm) soil cover. The C48 HDPE pipe with the largest moment of inertia and all other pipes require a 12 in. (305 mm) minimum soil cover.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Stopping and turning maneuvers on high traffic volume asphalt cement concrete surfaced roads and streets often cause distortion of the pavement. Distortion may show up as excessive rutting in the wheel path, shoving of the pavement and/or rippling of the surface. Often times repeated corrective work such as cold milling or heater planing is required in these areas to maintain the pavement surface in a reasonable condition. In recent years polymer additives have been developed for asphalt cement concrete paving mixes that show promise in improving the inplace stability of the pavements. AC-13 (Styrelf 13) available from Bitucote Products Company, St. Louis, Missouri is an asphalt cement that has been modified by an additive to exhibit characteristics of very high stability in asphalt mixes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Conventional highway lane markings are ineffective at night, particularly when the pavement is wet. There is a recognized need for a system that is effective at night under wet conditions and where there is no reduction in current daytime standards. To be effective at all times the system must maintain wet-night retroreflective properties while resisting deterioration caused by snowplows, studded tires, sand and salt applications, and lane changing maneuvers by traffic. This project tested a system of low-profile lane markers developed by Battelle Columbus Laboratory under contract with the Implementation Division of the Federal Highway Administration.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

During the harvest season in Iowa, it is common to have single axle loads on secondary roads and bridges that are excessive (typical examples are grain carts) and well beyond normal load limits. Even though these excessive loads occur only during a short time of the year, they may do significant damage to pavements and bridges. In addition, the safety of some bridges may be compromised because of the excessive loads, and sometimes there may be little indication to the users that damage may be imminent. At this time there are no Iowa laws regulating axle loads allowed for agricultural equipment. This study looks at the potential problems this may cause on secondary roads and timber stringer bridges. Both highway pavement and timber bridges are evaluated in this report. A section (panel) of Iowa PCC paved county road was chosen to study the effects of heavy agricultural loads on pavements. Instrumentation was applied to the panel and a heavily loaded grain cart was rolled across. The collected data were analyzed for any indication of excessive stresses of the concrete. The second study, concerning excessive loads on timber stringer bridges, was conducted in the laboratory. Four bridge sections were constructed and tested. Two of the sections contained five stringers and two sections had three stringers. Timber for the bridges came from a dismantled bridge, and deck panels were cut from new stock. All timber was treated with creosote. A hydraulic load was applied at the deck mid-span using a foot print representing a tire from a typical grain cart. Force was applied until failure of the system resulted. The collected data were evaluated to provide indications of load distribution and for comparison with expected wheel loads for a typical heavily loaded single axle grain cart. Results of the pavement tests showed that the potential of over-stressing the pavement is a possibility. Even though most of the tension stress levels recorded were below the rupture strength of the concrete, there were a few instances where the indicated tension stress level exceeded the concrete rupture strength. Results of the bridge tests showed that when the static ultimate load capacity of the timber stringer bridge sections was reached, there was sudden loss of capacity. Prior to reaching this ultimate capacity, the load sharing between the stringers was very uniform. The failure was characterized by loss of flexural capacity of the stringers. In all tests, the ultimate test load exceeded the wheel load that would be applied by an 875 bushel single axle grain cart.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Iowa DOT has been using blended cements in ternary mixes since 1999. Use of these supplementary cementitious materials gives concrete with higher strengths and much lower permeability. Use of these materials has been incorporated for use in High Performance Concrete (HPC) decks to achieve lower permeability and thus long term performance. Since we have been using these materials in paving, it would be informative to determine what concrete pavement properties are enhanced as related to high performance concrete. The air void system was excellent at a spacing factor of 0.0047 in (0.120 mm). AVA spacing factor results are much higher than the hardened air void analysis. Although only 3 samples were tested between the image analysis air content and the RapidAir457, there is pretty good agreement between those test methods. Air void analysis indicates that excessive vibration was not required to place the concrete. Vibration was well within the specification limits with an average of 6683 vpm’s with a standard deviation of 461. Overall ride of the project was very good. The average smoothness for the project was 2.1 in/mile (33.8 mm/km). The International Roughness Index (IRI) was 81 in/mi (1.29 m/km). The compressive strength was 6260 psi (43.2 MPa) at 28 days and 6830 (47.1 MPa) at 56 days. The modulus of rupture by third point loading (MOR-TPL) tested at 28 days was 660 psi (4.55 MPa). The AASHTO T277 rapid chloride permeability results at 28 days using the Virginia cure method correlate fairly well with the 56 and 90 day results with standard curing. The Virginia cure method 28 day results were 2475 coulombs and the standard cure 56 and 90 day test results were 2180 and 2118, respectively.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

It is commonly regarded that the overuse of traffic control devices desensitizes drivers and leads to disrespect, especially for low-volume secondary roads with limited enforcement. The maintenance of traffic signs is also a tort liability concern, exacerbated by unnecessary signs. The Federal Highway Administration’s (FHWA) Manual on Uniform Traffic Control Devices (MUTCD) and the Institute of Transportation Engineer’s (ITE) Traffic Control Devices Handbook provide guidance for the implementation of STOP signs based on expected compliance with right-of-way rules, provision of through traffic flow, context (proximity to other controlled intersections), speed, sight distance, and crash history. The approach(es) to stop is left to engineering judgment and is usually dependent on traffic volume or functional class/continuity of system. Although presently being considered by the National Committee on Traffic Control Devices, traffic volume itself is not given as a criterion for implementation in the MUTCD. STOP signs have been installed at many locations for various reasons which no longer (or perhaps never) met engineering needs. If in fact the presence of STOP signs does not increase safety, removal should be considered. To date, however, no guidance exists for the removal of STOP signs at two-way stop-controlled intersections. The scope of this research is ultra-low-volume (< 150 daily entering vehicles) unpaved intersections in rural agricultural areas of Iowa, where each of the 99 counties may have as many as 300 or more STOP sign pairs. Overall safety performance is examined as a function of a county excessive use factor, developed specifically for this study and based on various volume ranges and terrain as a proxy for sight distance. Four conclusions are supported: (1) there is no statistical difference in the safety performance of ultra-low-volume stop-controlled and uncontrolled intersections for all drivers or for younger and older drivers (although interestingly, older drivers are underrepresented at both types of intersections); (2) compliance with stop control (as indicated by crash performance) does not appear to be affected by the use or excessive use of STOP signs, even when adjusted for volume and a sight distance proxy; (3) crash performance does not appear to be improved by the liberal use of stop control; (4) safety performance of uncontrolled intersections appears to decline relative to stop-controlled intersections above about 150 daily entering vehicles. Subject to adequate sight distance, traffic professionals may wish to consider removal of control below this threshold. The report concludes with a section on methods and legal considerations for safe removal of stop control.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Lime sludge, an inert material mostly composed of calcium carbonate, is the result of softening hard water for distribution as drinking water. A large city such as Des Moines, Iowa, produces about 30,700 tons of lime sludge (dry weight basis) annually (Jones et al., 2005). Eight Iowa cities representing, according to the United States (U.S.) Census Bureau, 23% of the state’s population of 3 million, were surveyed. They estimated that they collectively produce 64,470 tons of lime sludge (dry weight basis) per year, and they currently have 371,800 tons (dry weight basis) stockpiled. Recently, the Iowa Department of Natural Resources directed those cities using lime softening in drinking water treatment to stop digging new lagoons to dispose of lime sludge. Five Iowa cities with stockpiles of lime sludge funded this research. The research goal was to find useful and economical alternatives for the use of lime sludge. Feasibility studies tested the efficacy of using lime sludge in cement production, power plant SOx treatment, dust control on gravel roads, wastewater neutralization, and in-fill materials for road construction. Applications using lime sludge in cement production, power plant SOx treatment, and wastewater neutralization, and as a fill material for road construction showed positive results, but the dust control application did not. Since the fill material application showed the most promise in accomplishing the project’s goal within the time limits of this research project, it was chosen for further investigation. Lime sludge is classified as inorganic silt with low plasticity. Since it only has an unconfined compressive strength of approximately 110 kPa, mixtures with fly ash and cement were developed to obtain higher strengths. When fly ash was added at a rate of 50% of the dry weight of the lime sludge, the unconfined strength increased to 1600 kPa. Further, friction angles and California Bearing Ratios were higher than those published for soils of the same classification. However, the mixtures do not perform well in durability tests. The mixtures tested did not survive 12 cycles of freezing and thawing and wetting and drying without excessive mass and volume loss. Thus, these mixtures must be placed at depths below the freezing line in the soil profile. The results demonstrated that chemically stabilized lime sludge is able to contribute bulk volume to embankments in road construction projects.