21 resultados para Evaluating and Selecting a Property Management System
Resumo:
Access management involves balancing the dual roles that roadways must play - through travel and access to property and economic activity. When these roles are not in proper balance, the result is a roadway system that functions sub-optimally. Arterial routes that have a too high driveway density and provide overly extensive access to property have high crash rates and begin to suffer in terms of traffic operations. Such routes become congested, delays increase, and mean travel speeds decline. The Iowa access management research and awareness project has had four distinct phases. Phase I involved a detailed review of the extensive national access management literature so lessons learned elsewhere could be applied in Iowa. In Phase II original case study research was conducted in Iowa. Phase III of the project concentrated on outreach and education about access management. Phase IV of the Iowa access management project extended the work conducted during Phases II and III. The main work products for Phase IV were as follows: 1) three additional before and after case studies, illustrating the impacts of various access management treatments on traffic safety, traffic operations, and business vitality; 2) an access management handbook aimed primarily at local governments in Iowa; 3) a modular access management toolkit with brief descriptions of various access management treatments and considerations; and 4) an extensive outreach plan aimed at getting the results of Phases I through IV of the project out to diverse audiences in Iowa and elsewhere.
Resumo:
Winter maintenance, particularly snow removal and the stress of snow removal materials on public structures, is an enormous budgetary burden on municipalities and nongovernmental maintenance organizations in cold climates. Lately, geospatial technologies such as remote sensing, geographic information systems (GIS), and decision support tools are roviding a valuable tool for planning snow removal operations. A few researchers recently used geospatial technologies to develop winter maintenance tools. However, most of these winter maintenance tools, while having the potential to address some of these information needs, are not typically placed in the hands of planners and other interested stakeholders. Most tools are not constructed with a nontechnical user in mind and lack an easyto-use, easily understood interface. A major goal of this project was to implement a web-based Winter Maintenance Decision Support System (WMDSS) that enhances the capacity of stakeholders (city/county planners, resource managers, transportation personnel, citizens, and policy makers) to evaluate different procedures for managing snow removal assets optimally. This was accomplished by integrating geospatial analytical techniques (GIS and remote sensing), the existing snow removal asset management system, and webbased spatial decision support systems. The web-based system was implemented using the ESRI ArcIMS ActiveX Connector and related web technologies, such as Active Server Pages, JavaScript, HTML, and XML. The expert knowledge on snow removal procedures is gathered and integrated into the system in the form of encoded business rules using Visual Rule Studio. The system developed not only manages the resources but also provides expert advice to assist complex decision making, such as routing, optimal resource allocation, and monitoring live weather information. This system was developed in collaboration with Black Hawk County, IA, the city of Columbia, MO, and the Iowa Department of transportation. This product was also demonstrated for these agencies to improve the usability and applicability of the system.
Resumo:
Tillage systems play a significant role in agricultural production throughout Iowa and the Midwest. It has been well documented that increased tillage intensities can reduce soil organic matter in the topsoil due to increased microbial activity and carbon (C ) oxidation. The potential loss of soil organic matter due to tillage operations is much higher for high organic matter soils than low organic matter soils. Tillage effects on soil organic matter can be magnified through soil erosion and loss of soil productivity. Soil organic matter is a natural reservoir for nutrients, buffers against soil erosion, and improves the soil environment to sustain soil productivity. Maintaining soil productivity requires an agriculture management system that maintains or improves soil organic matter content. Combining cropping systems and conservation tillage practices, such as no-tillage, strip-tillage, or ridge-tillage, are proven to be very effective in improving soil organic matter and soil quality.
Resumo:
This phase of the electronic collaboration project involved two major efforts: 1) implementation of AEC Sync (formerly known as Attolist), a web-based project management system (WPMS), on the Broadway Viaduct Bridge Project and the Iowa Falls Arch Bridge Project and 2) development of a web-based project management system for bridge and highway construction projects with less than $10 million in contract value. During the previous phase of this project (fiscal year 2010), the research team helped with the implementation process for AEC Sync and collected feedback from the Broadway Viaduct project team members before the start of the project. During the 2011 fiscal year, the research team collected the post-project surveys from the Broadway Viaduct project members and compared them to the pre-project survey results. The results of the AEC Sync implementation on the Broadway project were positive. The project members were satisfied with the performance of the AEC Sync software and how it facilitated document management and its transparency. In addition, the research team distributed, collected, and analyzed the pre-project surveys for the Iowa Falls Arch Bridge Project. The implementation of AEC Sync for the Iowa Falls Arch Bridge Project appears to also be positive, based on the pre-project surveys. The fourth phase of this electronic collaboration project involves the identification and implementation of a WPMS solution for smaller bridge and highway projects. The workflow for the shop drawing approval process for sign truss projects was documented and used to identify possible WPMS solutions. After testing and evaluating several WPMS solutions, Microsoft SharePoint Foundation’s site pages were selected to be pilot-tested on sign truss projects. Due to the limitation on the SharePoint license that the Iowa Department of Transportation (DOT) has, a file transfer protocol (FTP) site will be developed alongside this site to allow contractors to upload shop drawings to the Iowa DOT. The SharePoint site pages are expected to be ready for implementation during the 2012 calendar year.
Resumo:
Geographic information systems (GIS) and artificial intelligence (AI) techniques were used to develop an intelligent snow removal asset management system (SRAMS). The system has been evaluated through a case study examining snow removal from the roads in Black Hawk County, Iowa, for which the Iowa Department of Transportation (Iowa DOT) is responsible. The SRAMS is comprised of an expert system that contains the logical rules and expertise of the Iowa DOT’s snow removal experts in Black Hawk County, and a geographic information system to access and manage road data. The system is implemented on a mid-range PC by integrating MapObjects 2.1 (a GIS package), Visual Rule Studio 2.2 (an AI shell), and Visual Basic 6.0 (a programming tool). The system could efficiently be used to generate prioritized snowplowing routes in visual format, to optimize the allocation of assets for plowing, and to track materials (e.g., salt and sand). A test of the system reveals an improvement in snowplowing time by 1.9 percent for moderate snowfall and 9.7 percent for snowstorm conditions over the current manual system.
Resumo:
This document briefly summarizes the pavement management activities under the existing Iowa Department of Transportation (DOT) Pavement Management System. The second part of the document provides projected increase in use due to the implementation of the Iowa DOT Pavement Management Optimization System. All estimates of existing time devoted to the Pavement Management System and project increases in time requirements are estimates made by the appropriate Iowa DOT office director or function manager. Included is the new Pavement Management Optimization Structure for the three main offices which will work most closely with the Pavement Management Optimization System (Materials, Design, and Program Management).