28 resultados para EXPANSION CRACK ORIGIN


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bridge deck cracking occasionally occurs during construction for any number of reasons. Improper design, concrete placement or deck curing can result in cracks. One contributing factor toward cracking may be dead load deflections induced during concrete placement. For both continuous and non-continuous bridges, specific placement sequences are required to minimize harmful deflections in previously placed sections. Set retarding admixtures are also used to keep previously placed concrete plastic until the pour is completed. The problem is--at what point does movement of the concrete cause permanent damage to the deck. The study evaluated the time to crack formation relationship for mixes with low and high dosages of set retarding admixtures currently approved for use in Iowa state and county projects.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The most abundant clay mineral group in Iowa soils is montmorillonite, most commonly calcium-saturated (Hanway et al, 1960). The calcium montmorillonite-water system was therefore selected for detailed X-ray study. Montmorillonite is unusual among minerals in that it has an expanding lattice in the c direction. That is, upon wetting with water, the individual silicate layers separate to allow entry of water, and the mineral expands. Characteristics of this expansion are readily studied by means of X-ray diffraction: the X-ray diffraction angle gives the average layer-to-layer "d001" spacing for any given moisture condition; the sharpness of the diffraction peak is a measure of uniformity of the d001 spacing; and the intensity of the peak relates to uniformity of the d001 spacing and in addition to the electron density distribution within the repeating elements. The latter is embodied in the "structure factor".

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The design of satisfactory supporting and expansion devices for highway bridges is a problem which has concerned bridge design engineers for many years. The problems associated with these devices have been emphasized by the large number of short span bridges required by the current expanded highway program of expressways and interstate highways. The initial objectives of this investigation were: (1) To review and make a field study of devices used for the support of bridge superstructures and for provision of floor expansion; (2) To analyze the forces or factors which influence the design and behavior of supporting devices and floor expansion systems; and (3) To ascertain the need for future research particularly on the problems of obtaining more economical and efficient supporting and expansion devices, and determining maximum allowable distance between such devices. The experimental portion was conducted to evaluate one of the possible simple and economical solutions to the problems observed in the initial portion. The investigation reported herein is divided into four major parts or phases as follows: (1) A review of literature; (2) A survey by questionnaire of design practice of a number of state highway departments and consulting firms; (3) Field observation of existing bridges; and, (4) An experimental comparison of the dynamic behavior of rigid and elastomeric bearings.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Senate File 2355 Sec. 19 (Iowa Code §328.13) created a commercial air service retention and expansion committee within the aviation office of the department of transportation. The membership of the committee consisted of the director or the director’s designee; the managers of each airport in Iowa with commercial air service; two members of the senate, one appointed by the majority leader of the senate and one appointed by the minority leader of the senate; and two members of the house of representatives, one appointed by the speaker of the house and one appointed by the minority leader of the house. The committee was to develop a plan by December 31, 2014 for the retention and expansion of passenger air service in Iowa. The committee is to meet as the committee deems necessary to assess progress in implementing the plan and, if necessary, to update the plan.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bridge deck expansion joints are used to allow for movement of the bridge deck due to thermal expansion, dynamics loading, and other factors. More recently, expansion joints have also been utilized to prevent the passage of winter de-icing chemicals and other corrosives applied to bridge decks from penetrating and damaging substructure components of the bridge. Expansion joints are often one of the first components of a bridge deck to fail and repairing or replacing expansion joints are essential to extending the life of any bridge. In the Phase I study, the research team focused on the current means and methods of repairing and replacing bridge deck expansion joints. Research team members visited with Iowa Department of Transportation (DOT) Bridge Crew Leaders to document methods of maintaining and repairing bridge deck expansion joints. Active joint replacement projects around Iowa were observed to document the means of replacing expansion joints that were beyond repair, as well as, to identify bottlenecks in the construction process that could be modified to decrease the length of expansion joint replacement projects. After maintenance and replacement strategies had been identified, a workshop was held at the Iowa State Institute for Transportation to develop ideas to better maintain and replace expansion joints. Maintenance strategies were included in the discussion as a way to extend the useful life of a joint, thus decreasing the number of joints replaced in a year and reducing the traffic disruptions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The three miles of fibrous concrete resurfacing in Greene County, Iowa were placed in September and early October, 1973. It was recognized in advance that cracking and other performance characteristics of the fibrous concrete sections and of the control sections would be major factors in the evaluation of the project. A low level aerial survey was made of the old pavement. During construction of the resurfacing, the aerial survey was checked to insure that cracks in the old pavement were referenced to the 100 ft. station marks placed in the resurfacing. A final report for research project HR-165, based upon overall performance evaluation was published in December 1978.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A mechanical gauge was developed to monitor the movement of crack or joint openings in portland cement concrete structures, in general, and portland cement concrete pavements in particular. Designed to be inexpensive and simple to operate, this gauge is capable of recording maximum, minimum, and instantaneous crack or joint openings. Specific recommendations were made for recording minimum and maximum pavement temperature over the monitoring period. The report was written as a set of guidelines for design, fabrication, installation, and operation of the gauge as well as the temperature measuring device.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Major highway concrete pavements in Iowa have exhibited premature deterioration attributed to effects of ettringite formation, alkali-silica expansive reactions, and to frost attack, or some combination of them. These pavements were constructed in the mid- 1980s as non-reinforced, dual-lane, roads ranging in thickness between 200 mm and 300 mm, with skewed joints reinforced with dowels. Deterioration was initially recognized with a darkening of joint regions, which occurred for some pavements as soon as four years after construction. Pavement condition ranges from severe damage to none, and there appeared to be no unequivocal materials or processing variables correlated with failure. Based upon visual examinations, petrographic evaluation, and application of materials models, the deterioration of concrete highway pavements in Iowa appear related to a freeze-thaw failure of the coarse aggregate and the mortar. Crack patterns sub-parallel to the concrete surface transecting the mortar fraction and the coarse aggregate are indicative of freeze-thaw damage of both the mortar and aggregate. The entrained air void system was marginal to substandard, and filling of some of the finer-sized voids by ettringite appears to have further degraded the air void system. The formation of secondary ettringite within the entrained air voids probably reflects a relatively high degree of concrete saturation causing the smaller voids to be filled with pore solution when the concrete freezes. Alkali-silica reaction (ASR) affects some quartz and shale in the fine aggregate, but is not considered to be a significant cause of the deterioration. Delayed ettringite formation was not deemed likely as no evidence of a uniform paste expansion was observed. The lack of field-observed expansion is also evidence against the ASR and DEF modes of deterioration. The utilization of fly ash does not appear to have affected the deterioration as all pavements with or without fly ash exhibiting substantial damage also exhibit significant filling of the entrained air void system, and specimens containing fly ash from sound pavements do not have significant filling. The influence of the mixture design, mixing, and placing must be evaluated with respect to development of an adequate entrained air void system, concrete homogeneity, longterm drying shrinkage, and microcracking. A high-sand mix may have contributed to the difficult mixture characteristics noted upon placement and exacerbate concrete heterogeneity problems, difficulty in developing an adequate entrained air void system, poor consolidation potential, and increased drying shrinkage and cracking. Finally, the availability of moisture must also be considered, as the secondary precipitation of ettringite in entrained air voids indicates they were at least partially filled with pore solution at times. Water availability at the base of the slabs, in joints, and cracks may have provided a means for absorbing water to a point of critical saturation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Iowa DOT has been using the AASHTO Present Serviceability Index (PSI) rating procedure since 1968 to rate the condition of pavement sections. A ride factor and a cracking and patching factor make up the PSI value. Crack and patch surveys have been done by sending crews out to measure and record the distress. Advances in video equipment and computers make it practical to videotape roads and do the crack and patch measurements in the office. The objective of the study was to determine the feasibility of converting the crack and patch survey operation to a video recording system with manual post processing. The summary and conclusions are as follows: Video crack and patch surveying is a feasible alternative to the current crack and patch procedure. The cost per mile should be about 25 percent less than the current procedure. More importantly, the risk of accidents is reduced by getting the people and vehicles off the roadway and shoulder. Another benefit is the elimination of the negative public perceptions of the survey crew on the shoulder.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This Phase II follow-up study of IHRB Project TR-473 focused on the performance evaluation of rubblized pavements in Iowa. The primary objective of this study was to evaluate the structural condition of existing rubblized concrete pavements across Iowa through Falling Weight Deflectometer (FWD) tests, Dynamic Cone Penetrometer (DCP) tests, visual pavement distress surveys, etc. Through backcalculation of FWD deflection data using the Iowa State University's advanced layer moduli backcalculation program, the rubblized layer moduli were determined for various projects and compared with each other for correlating with the long-term pavement performance. The AASHTO structural layer coefficient for rubblized layer was also calculated using the rubblized layer moduli. To validate the mechanistic-empirical (M-E) hot mix asphalt (HMA) overlay thickness design procedure developed during the Phase I study, the actual HMA overlay thicknesses from the rubblization projects were compared with the predicted thicknesses obtained from the design software. The results of this study show that rubblization is a valid option to use in Iowa in the rehabilitation of portland cement concrete pavements provided the foundation is strong enough to support construction operations during the rubblization process. The M-E structural design methodology developed during Phase I can estimate the HMA overlay thickness reasonably well to achieve long-lasting performance of HMA pavements. The rehabilitation strategy is recommended for continued use in Iowa under those conditions conducive for rubblization.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Early entry sawing applies sawing earlier and more shallowly than conventional sawing and is believed to increase sawing productivity and reduce the cost of the joint sawing operations. However, some early entry sawing joints (transverse joints) in Iowa were found to experience delayed cracking, sometimes up to 30 days. A concern is whether early entry sawing can lead to late-age random cracking. The present study investigated the effects of different sawing methods on random cracking in portland cement concrete (PCC) pavements. The approach was to assess the cracking potential at sawing joints by measuring the strain development of the concrete at the joints using concrete embedment strain gages. Ten joints were made with the early entry sawing method to a depth of 1.5 in., and two strain gages were installed in each of the joints. Another ten joints were made with the conventional sawing method, five of which were sawed to a depth of one-third of the pavement thickness (3.3 in.), and the other five of which were sawed to a depth of one-quarter of the pavement thickness (2.5 in.). One strain gage was installed in each joint made using conventional sawing. In total, 30 strain gages were installed in 20 joints. The results from the present study indicate that all 30 joints cracked within 25 days after paving, though most joints made using early entry sawing cracked later than the joints made using conventional sawing. No random cracking was observed in the early entry sawing test sections two months after construction. Additionally, it was found that the strain gages used were capable of monitoring the deformations at the joints. The joint crack times (or crack initiation time) measured by the strain gages were generally consistent with the visual observations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Reflective cracks form in pavements when hot-mix asphalt (HMA) overlays are placed over jointed and/or severely cracked rigid and flexible pavements. In the first part of the research, survival analysis was conducted to identify the most appropriate rehabilitation method for composite pavements and to evaluate the influence of different factors on reflective crack development. Four rehabilitation methods, including mill and fill, overlay, heater scarification (SCR), and rubblization, were analyzed using three performance indicators: reflective cracking, international roughness index (IRI), and pavement condition index (PCI). It was found that rubblization can significantly retard reflective cracking development compared to the other three methods. No significant difference for PCI was seen among the four rehabilitation methods. Heater scarification showed the lowest survival probability for both reflective cracking and IRI, while an overlay resulted in the poorest overall pavement condition based on PCI. In addition, traffic level was found not to be a significant factor for reflective cracking development. An increase in overlay thickness can significantly delay the propagation of reflective cracking for all four treatments. Soil types in rubblization pavement sites were assessed, and no close relationship was found between rubblized pavement performance and subgrade soil condition. In the second part of the research, the study objective was to evaluate the modulus and performance of four reflective cracking treatments: full rubblization, modified rubblization, crack and seat, and rock interlayer. A total of 16 pavement sites were tested by the surface wave method (SWM), and in the first four sites both falling weight deflectometer (FWD) and SWM were conducted for a preliminary analysis. The SWM gave close concrete layer moduli compared to the FWD moduli on a conventional composite pavement. However, the SWM provided higher moduli for the rubblized concrete layer. After the preliminary analysis, another 12 pavement sites were tested by the SWM. The results showed that the crack and seat method provided the highest moduli, followed by the modified rubblization method. The full rubblization and the rock interlayer methods gave similar, but lower, moduli. Pavement performance surveys were also conducted during the field study. In general, none of the pavement sites had rutting problems. The conventional composite pavement site had the largest amount of reflective cracking. A moderate amount of reflective cracking was observed for the two pavement sites with full rubblization. Pavements with the rock interlayer and modified rubblization treatments had much less reflective cracking. It is recommended that use of the modified rubblization and rock interlayer treatments for reflective cracking mitigation are best.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The primary objective of this project was to determine the effect of bridge width on deck cracking in bridges. Other parameters, such as bridge skew, girder spacing and type, abutment type, pier type, and number of bridge spans, were also studied. To achieve the above objectives, one bridge was selected for live-load and long-term testing. The data obtained from both field tests were used to calibrate a three-dimensional (3D) finite element model (FEM). Three different types of loading—live loading, thermal loading, and shrinkage loading—were applied. The predicted crack pattern from the FEM was compared to the crack pattern from bridge inspection results. A parametric study was conducted using the calibrated FEM. The general conclusions/recommendations are as follows: -- Longitudinal and diagonal cracking in the deck near the abutment on an integral abutment bridge is due to the temperature differences between the abutment and the deck. Although not likely to induce cracking, shrinkage of the deck concrete may further exacerbate cracks developed from thermal effects. -- Based upon a limited review of bridges in the Iowa DOT inventory, it appears that, regardless of bridge width, longitudinal and diagonal cracks are prevalent in integral abutment bridges but not in bridges with stub abutments. -- The parametric study results show that bridge width and skew have minimal effect on the strain in the deck bridge resulting from restrained thermal expansion. -- Pier type, girder type, girder spacing, and number of spans also appear to have no influence on the level of restrained thermal expansion strain in the deck near the abutment.