56 resultados para Drainage engineering
Resumo:
The bearing capacity and service life of a pavement is affected adversely by the presence of undrained water in the pavement layers. In cold winter climates like in Iowa, this problem is magnified further by the risk of frost damage when water is present. Therefore, well-performing subsurface drainage systems form an important aspect of pavement design by the Iowa Department of Transportation (DOT). However, controversial findings are also reported in the literature regarding the benefits of subsurface drainage. The goal of this research was not to investigate whether subdrains are needed in Iowa pavements, but to conduct an extensive performance review of primary interstate pavement subdrains in Iowa, determine the cause of the problem if there are drains that are not functioning properly, and investigate the effect of poor subdrain performance due to improper design, construction, and maintenance on pavement surface distresses, if any. An extensive literature review was performed covering national-level and state-level research studies mainly focusing on the effects of subsurface drainage on performance of asphalt and concrete pavements. Several studies concerning the effects of a recycled portland cement concrete (RPCC) subbase on PCC pavement drainage systems were also reviewed. A detailed forensic test plan was developed in consultation with the project technical advisory committee (TAC) for inspecting and evaluating the Iowa pavement subdrains. Field investigations were conducted on 64 selected (jointed plain concrete pavement/JPCP and hot-mix asphalt/HMA) pavement sites during the fall season of 2012 and were mainly focused on the drainage outlet conditions. Statistical analysis was conducted on the compiled data from field investigations to further investigate the effect of drainage on pavement performance. Most Iowa subsurface drainage system outlet blockage is due to tufa, sediment, and soil. Although higher blockage rates reduce the flow rate of water inside outlet pipes, it does not always stop water flowing from inside the outlet pipe to outside the outlet pipe unless the outlet is completely blocked. Few pavement surface distresses were observed near blocked subsurface drainage outlet spots. More shoulder distresses (shoulder drop or cracking) were observed near blocked drainage outlet spots compared to open ones. Both field observations and limited performance analysis indicate that drainage outlet conditions do not have a significant effect on pavement performance. The use of RPCC subbase in PCC pavements results in tufa formation, a primary cause of drainage outlet blockage in JPCP. Several useful recommendations to potentially improve Iowa subdrain performance, which warrant detailed field investigations, were made.
Resumo:
The Institute for Transportation (InTrans) at Iowa State University (ISU) developed an internship mentoring program in collaboration with the Iowa Department of Transportation (DOT) to provide additional mentorship to both student interns and Iowa DOT intern managers. For the summer 2013 Iowa DOT Engineering Intern Development and Management Program, this report summarizes the following: * Mentoring activities conducted by ISU; * Results of the different intern program success assessments that were conducted; * Experiences, lessons learned, and recommendations; * Program benefits that were realized.
Resumo:
Drainage-basin and channel-geometry multiple-regression equations are presented for estimating design-flood discharges having recurrence intervals of 2, 5, 10, 25, 50, and 100 years at stream sites on rural, unregulated streams in Iowa. Design-flood discharge estimates determined by Pearson Type-III analyses using data collected through the 1990 water year are reported for the 188 streamflow-gaging stations used in either the drainage-basin or channel-geometry regression analyses. Ordinary least-squares multiple-regression techniques were used to identify selected drainage-basin and channel-geometry regions. Weighted least-squares multiple-regression techniques, which account for differences in the variance of flows at different gaging stations and for variable lengths in station records, were used to estimate the regression parameters. Statewide drainage-basin equations were developed from analyses of 164 streamflow-gaging stations. Drainage-basin characteristics were quantified using a geographic-information-system (GIS) procedure to process topographic maps and digital cartographic data. The significant characteristics identified for the drainage-basin equations included contributing drainage area, relative relief, drainage frequency, and 2-year, 24-hour precipitation intensity. The average standard errors of prediction for the drainage-basin equations ranged from 38.6% to 50.2%. The GIS procedure expanded the capability to quantitatively relate drainage-basin characteristics to the magnitude and frequency of floods for stream sites in Iowa and provides a flood-estimation method that is independent of hydrologic regionalization. Statewide and regional channel-geometry regression equations were developed from analyses of 157 streamflow-gaging stations. Channel-geometry characteristics were measured on site and on topographic maps. Statewide and regional channel-geometry regression equations that are dependent on whether a stream has been channelized were developed on the basis of bankfull and active-channel characteristics. The significant channel-geometry characteristics identified for the statewide and regional regression equations included bankfull width and bankfull depth for natural channels unaffected by channelization, and active-channel width for stabilized channels affected by channelization. The average standard errors of prediction ranged from 41.0% to 68.4% for the statewide channel-geometry equations and from 30.3% to 70.0% for the regional channel-geometry equations. Procedures provided for applying the drainage-basin and channel-geometry regression equations depend on whether the design-flood discharge estimate is for a site on an ungaged stream, an ungaged site on a gaged stream, or a gaged site. When both a drainage-basin and a channel-geometry regression-equation estimate are available for a stream site, a procedure is presented for determining a weighted average of the two flood estimates.
Resumo:
Multiplan spreadsheet solutions were developed for a set of hydraulic and highway engineering computations of common interest to county engineers. These include earthwork, vertical and horizontal curves, staking superelevated curves and sign inventories for highways. The hydraulic applications were ditch flow, runoff, culvert size and stage discharge.
Resumo:
The objective of phase one of this research was to assess the degree to which currently employed Iowa Department of Transportation (DOT) employees would be affected by a more aggressive policy to recruit and retain women and minority engineers. The DOT's "Future Agenda" was used as a baseline to focus on efforts to update and implement a recruitment plan that would target underrepresented classes. The primary question that emerged out of phase one was how could the Iowa DOT strengthen its ties with Iowa State University (ISU) to produce increased numbers of in-state applicants for engineering positions. This introduced the objective of phase two, which was to identify problem areas resulting in unacceptably high attrition rates for women, minorities, and to a lesser degree, Caucasian men in the College of Engineering at ISU, particularly Civil and Construction Engineering (CCE). Past research has focused on (1) projected shortages of qualified civil engineers, (2) the obstacles confronting women in a traditionally male-oriented profession, and (3) minorities who are often unprepared to succeed in the rigors of an engineering curriculum because of a lack of academic preparedness. The researchers in this study, in contrast, chose to emphasize institutional reasons why women, minorities, and some Caucasian men often feel a sense of isolation in the engineering program. It was found that one of the key obstacles to student retention is the lack of visibility of the civil engineering profession. The visibility problem led to the hypothesis that many engineering students do not have a clear conception of what the practice of civil engineering entails. It was found that this may be a better predictor of attrition than the stereotypical assumption that a majority of students leave their engineering programs because they are not academically able to compete. Recommendations are offered to strengthen the ties between ISU's Department of CCE and the Iowa DOT in order to counter the visibility issue. It was concluded that this is a vital step because over the next 5-15 years 40% of DOT engineers currently employed will be phasing into retirement. If the DOT expects to draw sufficient numbers of engineers from within the state of Iowa and if increasing numbers of them are to be women and minorities, a university connection will help to produce the qualified applicants to fulfill this need.
Resumo:
Excessive speed on State and County highways is recognized as a serious problem by many Iowans. Speed increases both the risk and severity of accidents. Studies conducted by the FHWA and NHTSA have concluded that if average speeds were increased by five MPH, fatalities would increase by at least 2,200 annually. Along with the safety problems associated with excessive speed are important energy considerations. When the national speed limit was lowered to 55 MPH in 1974, a tremendous savings in fuel was realized. The estimated actual savings for automobiles amounted to 2.2 billion gallons, an average of 20.75 gallons for each of the 106 million automobiles registered in 1975. These benefits prompted the Federal-Aid Amendment of 1974 requiring annual State enforcement certification as a prerequisite for approval of Federal-aid highway projects. In 1978, the United States D.O.T. recommended to Congress significant changes in speed limit legislation designed to increase compliance with the national speed limit. The Highway Safety Act of 1978 provides for both withholding Federal-aid highway funds and awarding incentive grants based on speed compliance data submitted annually. The objective of this study was to develop and make operational, an automatic speed monitoring system which would have flexible capabilities of collecting accurate speed data on all road systems in Iowa. It was concluded that the Automatic Speed Monitoring Program in Iowa has been successful and needed data is being collected in the most economical manner possible.
Resumo:
There has been a great deal of concern by county engineers and supervisors over constrained budgets, lack of resources and a deteriorating infrastructure, as they affect the secondary road system in Iowa. In addition, public input and/or political pressure have been increasing over the years. This study was initiated to determine the most important issues facing counties and document the way in which various Iowa counties have been addressing those issues. The list of issues was developed through meetings of county engineers and supervisors in each of the Iowa Department of Transportation (DOT) regions around the state. Questionnaires were sent to all engineers and supervisors statewide asking them how the various issues (e.g. snow and ice removal policies, Level "B" roads, and so on) were handled in their respective counties. The responses were then compiled into this document. The subjects selected and used include: county policies, ordinances, resolutions; snow and ice removal policy; dust control; Level "B" roads; vacating roads; rural development; private entrance construction and maintenance; roadside management practices; right of way encroachments and easements; personnel matters, staff and organization; communicating information to citizens; supervisor/ engineer relations; and county leasing/purchasing practices.
Resumo:
Iowa counties have tried to rehabilitate deteriorating portland cement concrete (PCC) pavements with standard overlays, placement of engineering fabric, rock, open graded bituminous mixes and cracking and seating. While these methods prolong the life of the road, the cracks in the old pavement have eventually reflected to the surface. One possible alternative for rehabilitating severely deteriorated roads and preventing reflective cracking is the rubblization process. The objective of this research project was to rehabilitate and evaluate a severely deteriorated PCC roadway using a rubblization process. A 3.0 km (1.9 mi) section of L63 in Mills County was selected for this research. The road was divided into 16 sections. A resonate frequency vibration pavement breaker was used to rubblize the existing pavement. The variables of rubblization, drainage, and ACC overlay depths of 75 mm (3 in.), 100 mm (4 in.), and 125 mm (5 in.) were evaluated. The research on rubblized concrete pavement bases support the following conclusions: (1) The rubblization process prevents reflective cracking; (2) Edge drains improved the structural rating of the rubblized roadway; (3) An ACC overlay of 125 mm (5 in.) on a rubblized base provided an excellent roadway regardless of soil and drainage conditions; (4) An ACC overlay of 75 mm (3 in.) on a rubblized base can provide a good roadway if the soil structure below the rubblized base is stable and well drained; and (5) The Road Rater structural ratings of the rubblized test sections for this project are comparable to the nonrubblized test sections.
Resumo:
The SoftPlotter, a soft photogrammetric software and Silicon Graphics workstation, was used to evaluate the accuracy of soft photogrammetry and identify applications of this technology to highway engineering. A comparative study showed that SoftPlotter compares well with other software such as Socket and Integraph. The PC software TNTMips is inexpensive but needs further development to be comparable to SoftPlotter. The Campus Project showed that soft photogrammetry is accurate for traditional photogrammetric applications. It is also accurate for producing orthophoto and base maps for Geographic Information Systems (GISs). The Highway Project showed that soft photogrammetry is accurate for highway engineering and that the technical staff at the Iowa Department of Transportation (IA DOT) can be easily trained in this new technology. The research demonstrated that soft photogrammetry can be used with low-flight helicopter photography for large-scale mapping in highway engineering. The researchers recommend that research be conducted to test the use of digital cameras instead of the traditional aerial cameras in helicopter photography. Research that examines the use of soft photogrammetry with video logging imagery for inventory and GIS studies in highway maintenance is also recommended. Research is also warranted into the integration of soft photogrammetry with virtual reality, which can be used in three-dimensional designing and visualization of highways and subdivisions in real time. The IA DOT owns one analytical plotter and two analogue plotters. The analytical plotter is used for aerial triangulation, and the analogue plotters are used for plotting. However, neither is capable of producing orthophotos. Therefore, the researchers recommend that the IA DOT purchase soft photogrammetric workstations for orthophoto production, and if and when required, use it for aerial triangulation and plotting. In the future, the analogue plotters may become obsolete. At that time, the researchers recommend that the analogue plotters be phased out and replaced by soft photogrammetric workstations.
Resumo:
Iowa's public road system of 112,000 miles is one of the largest and the best in the nation. It represents a considerable financial investment of taxpayer revenues over the years. And, it requires a sustained investment to preserve an economical level of transport service into the future. In 1982, a Governor's Blue Ribbon Transportation Task Force evaluated the effectiveness of Iowa's entire transportation system. Four important Task Force recommendations dealt with public road administrative issues in Iowa. These issues were related to: (1) Design criteria and levels of maintenance; (2) Consistency in the use of standards among jurisdictions; (3) Consolidation of maintenance operations at one jurisdiction level; and (4) Jurisdicational authority for roads; The issues formed the background for Research Project HR-265.
Resumo:
Since 1978 the concept of longitudinal edge drains along Iowa primary and Interstate highways has been accepted as a cost-effective way of prolonging pavement life. Edge-drain installations have increased over the years, reaching a total of nearly 3,000 mi by 1989. With so many miles of edge drain installed, the development of a system for inspection and evaluation of the drains became essential. Equipment was purchased to evaluate 4-in.-diameter and geocomposite edge drains. Initial evaluations at various sites supported the need for a postconstruction inspection program to ensure that edge-drain installations were in accord with plans and specifications. Information disclosed by video inspections in edge drains and in culverts was compiled on videotape to be used as an informative tool for personnel in the design, construction, and maintenance departments. Video evaluations have influenced changes in maintenance, design, and construction inspection for highway drainage systems in Iowa.
Resumo:
Iowa's public road system of 112,000 miles is one of the largest and the best in the nation. It represents a considerable financial investment of taxpayer revenues over the years. And, it requires a sustained investment to preserve an economical level of transport service into the future. In 1982, a Governor's Blue Ribbon Transportation Task Force evaluated the effectiveness of Iowa's entire transportation system. Four important Task Force recommendations dealt with public road administrative issues in Iowa. These issues were related to: 1. design criteria and levels of maintenance 2. consistency in the use of standards among jurisdictions 3. consolidation of maintenance operations at one jurisdictional level and 4. jurisdictional authority for roads. The issues formed the background for Research Project HR-265.
Resumo:
An asphalt concrete (ACC) overlay is most often the rehabilitative effort used to maintain the serviceability of either an ACC or PCC pavement. The major problem in durability of this ACC overlay comes from reflective cracking. These cracks usually open, allowing water to enter the unsealed crack and strip the ACC in the overlay. The stripping of the ACC allows accelerated deterioration at the crack. Two engineering fabrics were evaluated in this project in order to determine their effectiveness in reducing reflective cracking. These two materials are: PavePrep, Contech Construction Products, Inc., and Pro-Guard, Phillips Fiber Corporation. A 4.2 km (2.6 mi) roadway in Audubon County was selected for the research project. The roadway was divided into eight test sections. Four of the test sections are conventional resurfacing. The other four sections are split between the two engineering fabrics (two Pro-Guard and two PavePrep). A 75 mm (3 in.) thick overlay was placed over the entire project.
Resumo:
In Iowa it is normal procedure to either use partial or full-depth patching to repair deteriorated areas of pavement prior to resurfacing. The Owens/Corning Corporation introduced a repair system to replace the patching process. Their Roadglas repair system was used in this research project on US 30 in Story County. It was installed in 1985 and has been observed annually since that time. There were some construction problems with slippage as the roller crossed the abundant Roadglas binder. It appears the Roadglas system has helped to control reflective cracking in the research areas. Since the time when this project was completed it has been reported that Owens/Corning has discontinued production of the Roadglas system.
Resumo:
East Okoboji Beach was platted on April 20, 1961 and includes over 90.4 acres with 489 lots. The East Okoboji Beach project includes a complete storm water discharge system, which includes low impact development and reconstruction of the roadways in East Okoboji Beach. The East Okoboji Beach Project is an enormous project that is the first Dickinson County project to retrofit LID practices, lake-friendly storm-water drainage systems and roadway reconstruction throughout an existing sub- division. This cooperative project between DNR, Dickinson County, and EOB landowners includes engineering retention ponds, rain gardens, bio-swales and other LID practices to reduce nutrient and sediment pollutants flowing directly into East Okoboji. The nature of the problem stems back to that original plat where small lots were platted and developed without planning for storm water discharge. There was no consideration of the effects of filling in and developing over the many wetland areas existing in EOB. The scope of the problem covers the entire 90.4 acres in East Okoboji Beach, the DNR owned land and the farmed land to the east. The nature of the problem stems from storm water runoff flowing throughout the watershed and into East Okoboji Beach where it flows down self-made paths and then into East Lake Okoboji. That storm water runoff dumps nutrient and sediment pollutions directly into East Lake Okoboji. The expected result of this project is a new roadway and drainage system constructed with engineering that is intended to protect East Lake Okoboji and the land and homes in East Okoboji Beach. The benefit will be the improvement in the waters and the reduction of the siltation in the East Lake Okoboji.