35 resultados para Bored pile
Resumo:
The strategic plan for bridge engineering issued by AASHTO in 2005 identified extending the service life and optimizing structural systems of bridges in the United States as two grand challenges in bridge engineering, with the objective of producing safer bridges that have a minimum service life of 75 years and reduced maintenance cost. Material deterioration was identified as one of the primary challenges to achieving the objective of extended life. In substructural applications (e.g., deep foundations), construction materials such as timber, steel, and concrete are subjected to deterioration due to environmental impacts. Using innovative and new materials for foundation applications makes the AASHTO objective of 75 years service life achievable. Ultra High Performance Concrete (UHPC) with compressive strength of 180 MPa (26,000 psi) and excellent durability has been used in superstructure applications but not in geotechnical and foundation applications. This study explores the use of precast, prestressed UHPC piles in future foundations of bridges and other structures. An H-shaped UHPC section, which is 10-in. (250-mm) deep with weight similar to that of an HP10×57 steel pile, was designed to improve constructability and reduce cost. In this project, instrumented UHPC piles were cast and laboratory and field tests were conducted. Laboratory tests were used to verify the moment-curvature response of UHPC pile section. In the field, two UHPC piles have been successfully driven in glacial till clay soil and load tested under vertical and lateral loads. This report provides a complete set of results for the field investigation conducted on UHPC H-shaped piles. Test results, durability, drivability, and other material advantages over normal concrete and steel indicate that UHPC piles are a viable alternative to achieve the goals of AASHTO strategic plan.
Resumo:
Drilled shafts have been used in the US for more than 100 years in bridges and buildings as a deep foundation alternative. For many of these applications, the drilled shafts were designed using the Working Stress Design (WSD) approach. Even though WSD has been used successfully in the past, a move toward Load Resistance Factor Design (LRFD) for foundation applications began when the Federal Highway Administration (FHWA) issued a policy memorandum on June 28, 2000.The policy memorandum requires all new bridges initiated after October 1, 2007, to be designed according to the LRFD approach. This ensures compatibility between the superstructure and substructure designs, and provides a means of consistently incorporating sources of uncertainty into each load and resistance component. Regionally-calibrated LRFD resistance factors are permitted by the American Association of State Highway and Transportation Officials (AASHTO) to improve the economy and competitiveness of drilled shafts. To achieve this goal, a database for Drilled SHAft Foundation Testing (DSHAFT) has been developed. DSHAFT is aimed at assimilating high quality drilled shaft test data from Iowa and the surrounding regions, and identifying the need for further tests in suitable soil profiles. This report introduces DSHAFT and demonstrates its features and capabilities, such as an easy-to-use storage and sharing tool for providing access to key information (e.g., soil classification details and cross-hole sonic logging reports). DSHAFT embodies a model for effective, regional LRFD calibration procedures consistent with PIle LOad Test (PILOT) database, which contains driven pile load tests accumulated from the state of Iowa. PILOT is now available for broader use at the project website: http://srg.cce.iastate.edu/lrfd/. DSHAFT, available in electronic form at http://srg.cce.iastate.edu/dshaft/, is currently comprised of 32 separate load tests provided by Illinois, Iowa, Minnesota, Missouri and Nebraska state departments of transportation and/or department of roads. In addition to serving as a manual for DSHAFT and providing a summary of the available data, this report provides a preliminary analysis of the load test data from Iowa, and will open up opportunities for others to share their data through this quality–assured process, thereby providing a platform to improve LRFD approach to drilled shafts, especially in the Midwest region.
Resumo:
Soil slope instability concerning highway infrastructure is an ongoing problem in Iowa, as slope failures endanger public safety and continue to result in costly repair work. Characterization of slope failures is complicated, because the factors affecting slope stability can be difficult to discern and measure, particularly soil shear strength parameters. While in the past extensive research has been conducted on slope stability investigations and analysis, this research consists of field investigations addressing both the characterization and reinforcement of such slope failures. The current research focuses on applying an infrequently-used testing technique comprised of the Borehole Shear Test (BST). This in-situ test rapidly provides effective (i.e., drained) shear strength parameter values of soil. Using the BST device, fifteen Iowa slopes (fourteen failures and one proposed slope) were investigated and documented. Particular attention was paid to highly weathered shale and glacial till soil deposits, which have both been associated with slope failures in the southern Iowa drift region. Conventional laboratory tests including direct shear tests, triaxial compression tests, and ring shear tests were also performed on undisturbed and reconstituted soil samples to supplement BST results. The shear strength measurements were incorporated into complete evaluations of slope stability using both limit equilibrium and probabilistic analyses. The research methods and findings of these investigations are summarized in Volume 1 of this report. Research details of the independent characterization and reinforcement investigations are provided in Volumes 2 and 3, respectively. Combined, the field investigations offer guidance on identifying the factors that affect slope stability at a particular location and also on designing slope reinforcement using pile elements for cases where remedial measures are necessary. The research findings are expected to benefit civil and geotechnical engineers of government transportation agencies, consultants, and contractors dealing with slope stability, slope remediation, and geotechnical testing in Iowa.
Resumo:
Soil slope instability concerning highway infrastructure is an ongoing problem in Iowa, as slope failures endanger public safety and continue to result in costly repair work. Volume I of this current study summarizes research methods and findings, while Volume II provides procedural details for incorporating into practice an infrequently-used testing technique–borehole shear tests. Volume III of this study of field investigation of fifteen slopes in Iowa demonstrates through further experimental testing how lateral forces develop along stabilizing piles to resist slope movements. Results establish the feasibility of an alternative stabilization approach utilizing small-diameter pile elements. Also, a step-by-step procedure that can be used by both state and county transportation agencies to design slope reinforcement using slender piles is documented. Initial evidence of the efficiency and cost-effectiveness of stabilizing nuisance slope failures with grouted micropiles is presented. Employment of the remediation alternative is deemed more appropriate for stabilizing shallow slope failures. Overall, work accomplished in this research study included completing a comprehensive literature review on the state of the knowledge of slope stability and slope stabilization, the preparation and performance of fourteen full-scale pile load tests, the analysis of load test results, and the documentation of a design methodology for implementing the technology into current practices of slope stabilization. Recommendations for further research include monitoring pilot studies of slope reinforcement with grouted micropiles, supplementary experimental studies, and advanced numerical studies.
Resumo:
Since integral abutment bridges decrease the initial and maintenance costs of bridges, they provide an attractive alternative for bridge designers. The objective of this project is to develop rational and experimentally verified design recommendations for these bridges. Field testing consisted of instrumenting two bridges in Iowa to monitor air and bridge temperatures, bridge displacements, and pile strains. Core samples were also collected to determine coefficients of thermal expansion for the two bridges. Design values for the coefficient of thermal expansion of concrete are recommended, as well as revised temperature ranges for the deck and girders of steel and concrete bridges. A girder extension model is developed to predict the longitudinal bridge displacements caused by changing bridge temperatures. Abutment rotations and passive soil pressures behind the abutment were neglected. The model is subdivided into segments that have uniform temperatures, coefficients of expansion, and moduli of elasticity. Weak axis pile strains were predicted using a fixed-head model. The pile is idealized as an equivalent cantilever with a length determined by the surrounding soil conditions and pile properties. Both the girder extension model and the fixed-head model are conservative for design purposes. A longitudinal frame model is developed to account for abutment rotations. The frame model better predicts both the longitudinal displacement and weak axis pile strains than do the simpler models. A lateral frame model is presented to predict the lateral motion of skewed bridges and the associated strong axis pile strains. Full passive soil pressure is assumed on the abutment face. Two alternatives for the pile design are presented. Alternative One is the more conservative and includes thermally induced stresses. Alternative Two neglects thermally induced stresses but allows for the partial formation of plastic hinges (inelastic redistribution of forces). Ductility criteria are presented for this alternative. Both alternatives are illustrated in a design example.
Resumo:
This metric short course was developed in response to a request from the Office of Bridges and Structures to assist in the training of engineers in the use of metric units of measure which will be required in all highway designs and construction after September 30, 1996 (CFR Presidential Executive Order No. 12770). The course notes which are contained in this report, were developed for a half-day course. The course contains a brief review of metrication in the U.S., metric units, prefixes, symbols, basic conversions, etc. The unique part of the course is that it presents several typical bridge calculations (such as capacity of reinforced concrete compression members, strength of pile caps, etc.) worked two ways: inch-pound units throughout with end conversion to metric and initial hard conversion to metric with metric units throughout. Comparisons of partial results and final results (obtained by working the problems the two ways) are made for each of the example problems.
Resumo:
The highway departments of the states which use integral abutments in bridge design were contacted in order to study the extent of integral abutment use in skewed bridges and to survey the different guidelines used for analysis and design of integral abutments in skewed bridges. The variation in design assumptions and pile orientations among the various states in their approach to the use of integral abutments on skewed bridges is discussed. The problems associated with the treatment of the approach slab, backfill, and pile cap, and the reason for using different pile orientations are summarized in the report. An algorithm based on a state-of-the-art nonlinear finite element procedure previously developed by the authors was modified and used to study the influence of different factors on behavior of piles in integral abutment bridges. An idealized integral abutment was introduced by assuming that the pile is rigidly cast into the pile cap and that the approach slab offers no resistance to lateral thermal expansion. Passive soil and shear resistance of the cap are neglected in design. A 40-foot H pile (HP 10 X 42) in six typical Iowa soils was analyzed for fully restrained pile head and pinned pile head. According to numerical results, the maximum safe length for fully restrained pile head is one-half the maximum safe length for pinned pile head. If the pile head is partially restrained, the maximum safe length will lie between the two limits. The numerical results from an investigation of the effect of predrilled oversized holes indicate that if the length of the predrilled oversized hole is at least 4 feet below the ground, the vertical load-carrying capacity of the H pile is only reduced by 10 percent for 4 inches of lateral displacement in very stiff clay. With no predrilled oversized hole, the pile failed before the 4-inch lateral displacement was reached. Thus, the maximum safe lengths for integral abutment bridges may be increased by predrilling. Four different typical Iowa layered soils were selected and used in this investigation. In certain situations, compacted soil (> 50 blow count in standard penetration tests) is used as fill on top of natural soil. The numerical results showed that the critical conditions will depend on the length of the compacted soil. If the length of the compacted soil exceeds 4 feet, the failure mechanism for the pile is similar to one in a layer of very stiff clay. That is, the vertical load-carrying capacity of the H pile will be greatly reduced as the specified lateral displacement increases.
Resumo:
The objective of this research study is to evaluate the performance, maintenance requirements and cost effectiveness of constructing reinforced slope along a concrete bikeway overpass with a Geogrid system such as manufactured by Tensar Corporation or Reinforced Earth Company. This final report consists of two separate reports - construction and performance. An earlier design report and work plan was submitted to the Iowa DOT in 1989. From the Design Report, it was determined that the reinforced slope would be the most economical system for this particular bikeway project. Preliminary cost estimates for other design alternatives including concrete retaining walls, gabions and sheet pile walls ranged from $204/L.F. to $220/L.F. The actual final construction cost of the reinforced slope with GEDGRIDS was around $112/L.F. Although, since the reinforced slope system was not feasible next to the bridge overpass because of design constraints, a fair cost comparison should reflect costs of constructing a concrete retaining wall. Including the concrete retaining wall costs raises the per lineal foot cost to around $122/L.F. In addition to this initial construction cost effectiveness of the reinforced slope, there has been little or no maintenance needed for this reinforced slope. It was noted that some edge mowing or weed whacking could be done near the concrete bikeway slab to improve the visual quality of the slope, but no work has been assigned to city crews. It was added that this kind of weed whacking over such steep slope is more difficult and there could possibly be more potential for work related injury. The geogrid reinforced slope has performed really well once the vegetation took control and prevented soil washing across the bikeway slab. To that end, interim erosion control measures might need to be considered in future projects. Some construction observations were noted. First, there i s no specialized experience or equipment required for a contractor to successfully build a low-to-medium geogrid reinforced slope structure. Second, the adaptability of the reinforced earth structure enables the designer to best fit the shape of the structure to the environment and could enhance aesthetic quality. Finally, a reinforced slope can be built with relatively soft soils provided differential settlements between facing are limited to one or two percent.
Resumo:
Since the beginning of channel straightening at the turn of the century, the streams of western Iowa have degraded 1.5 to 5 times their original depth. This vertical degradation is often accompanied by increases in channel widths of 2 to 4 times the original widths. The deepening and widening of these streams has jeopardized the structural safety of many bridges by undercutting footings or pile caps, exposing considerable length of piling, and removing soil beneath and adjacent to abutments. Various types of flume and drop structures have been introduced in an effort to partially or totally stabilize these channels, protecting or replacing bridge structures. Although there has always been a need for economical grade stabilization structures to stop stream channel degradation and protect highway bridges and culverts, the problem is especially critical at the present time due to rapidly increasing construction costs and decreasing revenues. Benefits derived from stabilization extend beyond the transportation sector to the agricultural sector, and increased public interest and attention is needed.
Resumo:
In coordination with a Technical Advisory Committee (TAC) consisting of County Engineers and Iowa DOT representatives, the Iowa DOT has proposed to develop a set of standards for a single span prefabricated bridge system for use on the local road system. The purpose of the bridge system is to improve bridge construction, accelerate project delivery, improve worker safety, be cost effective, reduce impacts to the travelling public by reducing traffic disruptions and the duration of detours, and allow local forces to construct the bridges. HDR Inc. was selected by the Iowa DOT to perform the initial concept screening of the bridge system. This Final Report summarizes the initial conceptual effort to investigate potential systems, make recommendations for a preferred system and propose initial details to be tested in the laboratory in Phase 2 of the project. The prefabricated bridge components were to be based on the following preliminary criteria set forth by the TAC. The criteria were to be verified and/ or modified as part of the conceptual development. - 24’ and 30’ roadway widths - Skews of 0o, 15o, and 30o - Span lengths of 30’ – 70’ in 10’ increments using precast concrete beams - Voided box beams could be considered - Limit precast element weight to 45,000 pounds for movement and placement of beams - Beams could be joined transversely with threaded rods - Abutment concepts may included precast as well as an option for cast-in-place abutments with pile foundations In addition to the above criteria, there was an interest to use a single-width prefabricated bridge component to simplify fabrication as well as a desire to utilize non-prestressed concrete systems where possible to allow for precasting of the beam modules by local forces or local precast plants. The SL-1 modular steel bridge rail was identified for use with this single span prefabricated bridge system.
Resumo:
More and more, integral abutment bridges are being used in place of the more traditional bridge designs with expansion releases. In this study, states which use integral abutment bridges were surveyed to determine their current practice in the design of these structures. To study piles in integral abutment bridges, a finite element program for the soil-pile system was developed (1) with materially and geometrically nonlinear, two and three dimensional beam elements and (2) with a nonlinear, Winkler soil model with vertical, horizontal, and pile tip springs. The model was verified by comparison to several analytical and experimental examples. A simplified design model for analyzing piles in integral abutment bridges is also presented. This model grew from previous analytical models and observations of pile behavior. The design model correctly describes the essential behavioral characteristics of the pile and conservatively predicts the vertical load-carrying capacity. Analytical examples are presented to illustrate the effects of lateral displacements on the ultimate load capacity of a pile. These examples include friction and end-bearing piles; steel, concrete, and timber piles; and bending about the weak, strong, and 45° axes for H piles. The effects of cyclic loading are shown for skewed and nonskewed bridges. The results show that the capacity of friction piles is not significantly affected by lateral displacements, but the capacity of end-bearing piles is reduced. Further results show that the longitudinal expansion of the bridge can introduce a vertical preload on the pile.
Resumo:
Based on the conclusions of IHRB Project TR-444, Demonstration Project Using Railroad Flat Car Bridges for Low Volume Road Bridges, additional research on the use of RRFC bridges was undertaken. This portion of the project investigated the following: (1) Different design and rating procedures; (2) Additional single span configurations plus multiple span configurations; (3) Different mechanisms for connecting adjacent RRFCs and the resulting lateral load distribution factors; (4) Sheet pile abutments; and (5) Behavior RRFCs that had been strengthened so that they could be used on existing abutments. A total of eight RRFC bridges were tested (five single span bridges, two two-span bridges, and one three-span bridge). Based on the results of this study a simplified design and rating procedure has been developed for the economical replacement bridge alternative. In Volume 1, this volume, the results from the testing of four single span RRFC bridges are presented, while in Volume 2 the results from the testing of the strengthened single span bridge plus the three multiple span bridges are presented.
Resumo:
Based on the conclusions of IHRB Project TR-444, Demonstration Project Using Railroad Flat Car Bridges for Low Volume Road Bridges, additional research on the use of RRFC bridges was undertaken. This portion of the project investigated the following: (1) Different design and rating procedures; (2) Additional single span configurations plus multiple span configurations; (3) Different mechanisms for connecting adjacent RRFCs and the resulting lateral load distribution factors; (4) Sheet pile abutments; and (5) Behavior RRFCs that had been strengthened so that they could be used on existing abutments. A total of eight RRFC bridges were tested (five single span bridges, two two-span bridges, and one three-span bridge). Based on the results of this study a simplified design and rating procedure has been developed for the economical replacement bridge alternative. In Volume 1, the results from the testing of four single span RRFC bridges are presented, while in Volume 2,this volume, the results from the testing of the strengthened single span bridge plus the three multiple span bridges are presented.
Resumo:
There are hundreds of structurally deficient or functionally obsolete bridges in the state of Iowa. With the majority of these bridges located on rural county roads where there is limited funding available to replace the bridges, diagnostic load testing can be utilized to determine the actual load carrying capacity of the bridge. One particular family or fleet of bridges that has been determined to be desirable for load testing consists of single-span bridges with non-composite, cast-in-place concrete decks, steel stringers, and timber substructures. Six bridges with poor performing superstructure and substructure from the aforementioned family of bridges were selected to be load tested. The six bridges were located on rural roads in five different counties in Iowa: Boone, Carroll, Humboldt, Mahaska, and Marshall. Volume I of this report focuses on evaluating the superstructure for this family of bridges. This volume discusses the behavior characteristics that influence the load carrying capacity of this fleet of bridges. In particular, the live load distribution, partial composite action, and bearing restraint were investigated as potential factors that could influence the bridge ratings. Implementing fleet management practices, the bridges were analyzed to determine if the load test results could be predicted to better analyze previously untested bridges. For this family of bridges it was found that the ratings increased as a result of the load testing demonstrating a greater capacity than determined analytically. Volume II of this report focuses on evaluating the timber substructure for this family of bridges. In this volume, procedures for detecting pile internal decay using nondestructive ultrasonic stress wave techniques, correlating nondestructive ultrasonic stress wave techniques to axial compression tests to estimate deteriorated pile residual strength, and evaluating load distribution through poor performing timber substructure elements by instrumenting and load testing the abutments of the six selected bridges are discussed. Also, in this volume pile repair methods for restoring axial and bending capacities of pile are developed and evaluated.
Resumo:
Problems with unknown bridge foundations in Iowa are often associated with timber substructures. Timber piles are subject to biological and physical deterioration, which makes quantifying in-service pile capacity difficult. Currently there are no reliable means to estimate the residual carrying capacity of an in-service deteriorated pile; and thus, the overall safety of the bridge cannot be determined. The lack of reliable evaluation methods can lead to conservative and costly maintenance practices. This research study was undertaken to investigate procedures for assessing bridge substructures, and evaluating procedures for rehabilitating/strengthening/replacing inadequate substructure components. The report includes an extensive literature review, a field reconnaissance study of 49 bridges, a survey of substructure problems from the perspective of County Engineers, a laboratory study aiming to correlate nondestructive tests to residual pile strength and stiffness values, nondestructive and destructive load tests for 6 bridges with poor substructures, and finally a laboratory study evaluating selected repair methods.