103 resultados para Animation, Sound, Design
Resumo:
According to the 1972 Clean Water Act, the Environmental Protection Agency (EPA) established a set of regulations for the National Pollutant Discharge Elimination System (NPDES). The purpose of these regulations is to reduce pollution of the nation’s waterways. In addition to other pollutants, the NPDES regulates stormwater discharges associated with industrial activities, municipal storm sewer systems, and construction sites. Phase II of the NPDES stormwater regulations, which went into effect in Iowa in 2003, applies to construction activities that disturb more than one acre of ground. The regulations also require certain communities with Municipal Separate Storm Sewer Systems (MS4) to perform education, inspection, and regulation activities to reduce stormwater pollution within their communities. Iowa does not currently have a resource to provide guidance on the stormwater regulations to contractors, designers, engineers, and municipal staff. The Statewide Urban Design and Specifications (SUDAS) manuals are widely accepted as the statewide standard for public improvements. The SUDAS Design manual currently contains a brief chapter (Chapter 7) on erosion and sediment control; however, it is outdated, and Phase II of the NPDES stormwater regulations is not discussed. In response to the need for guidance, this chapter was completely rewritten. It now escribes the need for erosion and sediment control and explains the NPDES stormwater regulations. It provides information for the development and completion of Stormwater Pollution Prevention Plans (SWPPPs) that comply with the stormwater regulations, as well as the proper design and implementation of 28 different erosion and sediment control practices. In addition to the design chapter, this project also updated a section in the SUDAS Specifications manual (Section 9040), which describes the proper materials and methods of construction for the erosion and sediment control practices.
Resumo:
In this paper, we examine the design of permit trading programs when the objective is to minimize the cost of achieving an ex ante pollution target, that is, one that is defined in expectation rather than an ex post deterministic value. We consider two potential sources of uncertainty, the presence of either of which can make our model appropriate: incomplete information on abatement costs and uncertain delivery coefficients. In such a setting, we find three distinct features that depart from the well-established results on permit trading: (1) the regulator’s information on firms’ abatement costs can matter; (2) the optimal permit cap is not necessarily equal to the ex ante pollution target; and (3) the optimal trading ratio is not necessarily equal to the delivery coefficient even when it is known with certainty. Intuitively, since the regulator is only required to meet a pollution target on average, she can set the trading ratio and total permit cap such that there will be more pollution when abatement costs are high and less pollution when abatement costs are low. Information on firms’ abatement costs is important in order for the regulator to induce the optimal alignment between pollution level and abatement costs.
Validation of the New Mix Design Process for Cold In-Place Rehabilitation Using Foamed Asphalt, 2007
Resumo:
Asphalt pavement recycling has grown dramatically over the last few years as a viable technology to rehabilitate existing asphalt pavements. Iowa's current Cold In-place Recycling (CIR) practice utilizes a generic recipe specification to define the characteristics of the CIR mixture. As CIR continues to evolve, the desire to place CIR mixture with specific engineering properties requires the use of a mix design process. A new mix design procedure was developed for Cold In-place Recycling using foamed asphalt (CIR-foam) in consideration of its predicted field performance. The new laboratory mix design process was validated against various Reclaimed Asphalt Pavement (RAP) materials to determine its consistency over a wide range of RAP materials available throughout Iowa. The performance tests, which include dynamic modulus test, dynamic creep test and raveling test, were conducted to evaluate the consistency of a new CIR-foam mix design process to ensure reliable mixture performance over a wide range of traffic and climatic conditions. The “lab designed” CIR will allow the pavement designer to take the properties of the CIR into account when determining the overlay thickness.
Resumo:
Granular shoulders are an important element of the transportation system and are constantly subjected to performance problems due to wind- and water-induced erosion, rutting, edge drop-off, and slope irregularities. Such problems can directly affect drivers’ safety and often require regular maintenance. The present research study was undertaken to investigate the factors contributing to these performance problems and to propose new ideas to design and maintain granular shoulders while keeping ownership costs low. This report includes observations made during a field reconnaissance study, findings from an effort to stabilize the granular and subgrade layer at six shoulder test sections, and the results of a laboratory box study where a shoulder section overlying a soft foundation layer was simulated. Based on the research described in this report, the following changes are proposed to the construction and maintenance methods for granular shoulders: • A minimum CBR value for the granular and subgrade layer should be selected to alleviate edge drop-off and rutting formation. • For those constructing new shoulder sections, the design charts provided in this report can be used as a rapid guide based on an allowable rut depth. The charts can also be used to predict the behavior of existing shoulders. • In the case of existing shoulder sections overlying soft foundations, the use of geogrid or fly ash stabilization proved to be an effective technique for mitigating shoulder rutting.
Resumo:
In Iowa, hundreds of people die and thousands more are injured on our public roadways each year despite decades of efforts to end this su�ffering. Past safety e�efforts have resulted in Iowans bene�fiting from one of the best state roadway systems in the nation. Due to multi-agency e�efforts, Iowa has achieved 90 percent compliance with the state’s mandatory front seat belt use law, earned the nation’s second-lowest percent of alcohol involvement in fatal crashes and made safety gains in system-wide roadway design and operational improvements. Despite these ongoing e�efforts, the state’s annual average of 445 deaths and thousands of life-changing injuries is a tragic toll and an unacceptable public health epidemic in our state. To save more lives on our roadways, Iowans must be challenged to think �differently about lifesaving measures addressing young drivers, safety belts, and motorcycle helmet use and accept innovative designs such as roundabouts. Iowa must apply evidence-based strategies and create a safety culture that motivates all citizens to travel more responsibly. They must demand a lower level of tolerance for Iowa’s roadway deaths and injuries. The Iowa Comprehensive Highway Safety Plan (CHSP) engages diverse safety stakeholders and charts the course for this state, bringing to bear sound science and the power of shared community values to change the culture and achieve a standard of safer travel for our citizens. How many roadway deaths and injuries are too many? Iowa’s highway safety stakeholders believe that, “One death is one too many” and e�effective culture-changing policy and program strategies must be implemented to help reduce this death toll from an annual average of 445 to 400 by the year 2015.
Resumo:
Nationwide, about five cents of each highway construction dollar is spent on culverts. In Iowa, average annual construction costs on the interstate, primary, and federal-aid secondary systems are about $120,000,000. Assuming the national figure applies to Iowa, about $6,000,000 are spent on culvert construction annually. For each one percent reduction in overall culvert costs, annual construction costs would be reduced by $60,000. One area of potential cost reduction lies in the sizing of the culvert. Determining the flow area and hydraulic capacity is accomplished in the initial design of the culvert. The normal design sequence is accomplished in two parts. The hydrologic portion consists of the determination of a design discharge in cubic feet per second using one of several available methods. This discharge is then used directly in the hydraulic portion of the design to determine the proper type, size, and shape of culvert to be used, based on various site and design restrictions. More refined hydrologic analyses, including rainfall-runoff analysis, flood hydrograph development, and streamflow routing techniques, are not pursued in the existing design procedure used by most county and state highway engineers.
Resumo:
This report presents the results of the largest and most comprehensive study to date on portland cement pervious concrete (PCPC). It is designed to be widely accessible and easily applied by designers, producers, contractors, and owners. The project was designed to begin with pervious concrete best practices and then to address the unanswered questions in a systematic fashion to allow a successful overlay project. Consequently, the first portion of the integrated project involved a combination of fundamental material property investigations, test method development, and addressing constructability issues before actual construction could take place. The second portion of the project involved actual construction and long-term testing before reporting successes, failures, and lessons learned. The results of the studies conducted show that a pervious concrete overlay can be designed, constructed, operated, and maintained. A pervious concrete overlay has several inherent advantages, including reduced splash and spray and reduced hydroplaning potential, as well as being a very quiet pavement. The good performance of this overlay in a particularly harsh freeze-thaw climate, Minnesota, shows pervious concrete is durable and can be successfully used in freeze-thaw climates with truck traffic and heavy snow plowing.
Resumo:
The main objective of this study was to evaluate the hydraulic performance of riprap spurs and weirs in controlling bank erosion at the Southern part of the Raccoon River upstream U.S. Highway 169 Bridge utilizing the commercially available model FESWMS and field monitoring. It was found based on a 2 year monitoring and numerical modeling that the design of structures was overall successful, including their spacing and stability. The riprap material incorporated into the structures was directly and favorably correlated to the flow transmission through the structure, or in other words, dictated the permeable nature of the structure. It was found that the permeable dikes and weirs chosen in this study created less volume of scour in the vicinity of the structure toes and thus have less risk comparatively to other impermeable structures to collapse. The fact that the structures permitted the transmission of flow through them it allowed fine sand particles to fill in the gaps of the rock interstices and thus cement and better stabilize the structures. During bank-full flows the maximum scour hole was recorded away from the structures toe and the scourhole size was directly related to the protrusion angle of the structure to the flow. It was concluded that the proposed structure inclination with respect to the main flow direction was appropriate since it provides maximum bank protection while creating the largest volume of local scour away from the structure and towards the center of the channel. Furthermore, the lowest potential for bank erosion also occurs with the present set-up design chosen by the IDOT. About 2 ft of new material was deposited in the area located between the structures for the period extending from the construction day to May 2007. Surveys obtained by sonar and the presence of vegetation indicate that new material has been added at the bank toes. Finally, the structures provided higher variability in bed topography forming resting pools, creating flow shade on the leeward side of the structure, and separation of bed substrate due to different flow conditions. Another notable environmental benefit to rock riprap weirs and dikes is the creation of resting pools, especially in year 2007 (2nd year of the project). The magnitude of these benefits to aquatic habitat has been found in the literature that is directly related to the induced scour-hole volume.
Resumo:
This report summarizes research conducted at Iowa State University on behalf of the Iowa Department of Transportation, focusing on the volumetric state of hot-mix asphalt (HMA) mixtures as they transition from stable to unstable configurations. This has raditionally been addressed during mix design by meeting a minimum voids in the mineral aggregate (VMA) requirement, based solely upon the nominal maximum aggregate size without regard to other significant aggregate-related properties. The goal was to expand the current specification to include additional aggregate properties, e.g., fineness modulus, percent crushed fine and coarse aggregate, and their interactions. The work was accomplished in three phases: a literature review, extensive laboratory testing, and statistical analysis of test results. The literature review focused on the history and development of the current specification, laboratory methods of identifying critical mixtures, and the effects of other aggregate-related factors on critical mixtures. The laboratory testing involved three maximum aggregate sizes (19.0, 12.5, and 9.5 millimeters), three gradations (coarse, fine, and dense), and combinations of natural and manufactured coarse and fine aggregates. Specimens were compacted using the Superpave Gyratory Compactor (SGC), conventionally tested for bulk and maximum theoretical specific gravities and physically tested using the Nottingham Asphalt Tester (NAT) under a repeated load confined configuration to identify the transition state from sound to unsound. The statistical analysis involved using ANOVA and linear regression to examine the effects of identified aggregate factors on critical state transitions in asphalt paving mixtures and to develop predictive equations. The results clearly demonstrate that the volumetric conditions of an HMA mixture at the stable unstable threshold are influenced by a composite measure of the maximum aggregate size and gradation and by aggregate shape and texture. The currently defined VMA criterion, while significant, is seen to be insufficient by itself to correctly differentiate sound from unsound mixtures. Under current specifications, many otherwise sound mixtures are subject to rejection solely on the basis of failing to meet the VMA requirement. Based on the laboratory data and statistical analysis, a new paradigm to volumetric mix design is proposed that explicitly accounts for aggregate factors (gradation, shape, and texture).
Design and Evaluation of a Single-Span Bridge Using Ultra- High Performance Concrete, September 2009
Resumo:
Research presented herein describes an application of a newly developed material called Ultra-High Performance Concrete (UHPC) to a single-span bridge. The two primary objectives of this research were to develop a shear design procedure for possible code adoption and to provide a performance evaluation to ensure the viability of the first UHPC bridge in the United States. Two other secondary objectives included defining of material properties and understanding of flexural behavior of a UHPC bridge girder. In order to obtain information in these areas, several tests were carried out including material testing, large-scale laboratory flexure testing, large-scale laboratory shear testing, large-scale laboratory flexure-shear testing, small-scale laboratory shear testing, and field testing of a UHPC bridge. Experimental and analytical results of the described tests are presented. Analytical models to understand the flexure and shear behavior of UHPC members were developed using iterative computer based procedures. Previous research is referenced explaining a simplified flexural design procedure and a simplified pure shear design procedure. This work describes a shear design procedure based on the Modified Compression Field Theory (MCFT) which can be used in the design of UHPC members. Conclusions are provided regarding the viability of the UHPC bridge and recommendations are made for future research.
Resumo:
The purpose of this manual is to provide design guidelines for low water stream crossings (LWSCs). Rigid criteria for determining the applicability of a LWSC to a given site are not established since each site is unique in terms of physical, social, economic, and political factors. Because conditions vary from county to county, it is not the intent to provide a "cook-book" procedure for designing a LWSC. Rather, engineering judgment must be applied to the guidelines contained in this manual.
Resumo:
Most counties have bridges that are no longer adequate, and are faced with large capital expenditure for replacement structures of the same size. In this regard, low water stream crossings (LWSCs) can provide an acceptable, low cost alternative to bridges and culverts on low volume and reduced maintenance level roads. In addition to providing a low cost option for stream crossings, LWSCs have been designed to have the additional benefit of stream bed stabilization. Considerable information on the current status of LWSCs in Iowa, along with insight of needs for design assistance, was gained from a survey of county engineers that was conducted as part of this research (Appendix A). Copies of responses and analysis are included in Appendix B. This document provides guidelines for the design of LWSCs. There are three common types of LWSCs: unvented ford, vented ford with pipes, and low water bridges. Selection among these depends on stream geometry, discharge, importance of road, and budget availability. To minimize exposure to tort liability, local agencies using low water stream crossings should consider adopting reasonable selection and design criteria and certainly provide adequate warning of these structures to road users. The design recommendations included in this report for LWSCs provide guidelines and suggestions for local agency reference. Several design examples of design calculations are included in Appendix E.
Resumo:
The evaluation’s overarching question was “Did the activities undertaken through the state’s LSTA plan achieve results related to priorities identified in the Act?” The evaluation was conducted and is organized according to the six LSTA priorities. The research design employed two major methodologies: 1. Data sources from Iowa Library Services / State Library of Iowa2 as well as U.S and state sources were indentified for quantitative analysis. These sources, which primarily reflect outputs for various projects, included: Statistics from the Public Library Annual Survey Statistics collected internally by Iowa Library Services such as number of libraries subscribing to sponsored databases, number of database searches, attendance at continuing education events, number of interlibrary loan transactions Evaluation surveys from library training sessions, professional development workshops and other programs supported by LSTA funds Internal databases maintained by Iowa Library Services Impact results from post training evaluations conducted by Iowa Library Services 2010 Iowa census data from the U.S. Census Bureau LSTA State Program Reports for the grant period 2. Following the quantitative analysis, the evaluator gathered qualitative data through interviews with key employees, a telephone focus group with district library consultants and two surveys: LSTA Evaluation Survey (Public Libraries) and LSTA Evaluation Survey (Academic Libraries). Both surveys provided sound samples with 43 representatives of Iowa’s 77 academic libraries and 371 representatives of Iowa’s 544 public libraries participating. Respondents represented libraries of all sizes and geographical areas. Both surveys included multiple choice and rating scale items as well as open-ended questions from which results were coded to identify trends, issues and recommendations.
Resumo:
The I-74 Aesthetic Design Guideline (ADG) document has two primary goals: To establish and identify an overall design theme To prioritize enhancement opportunities within the framework of corridor elements The recommendations of this report have been developed based on an “unconstrained” framework for future corridor–wide enhancements. Future funding availability, along with the recommendations of this report, will guide the final design process. ADG Future Uses: This document is intended to be used as a reference to future processes in the following ways: Guidance for I-74 final design teams Reference document for future local community redevelopment initiatives Inspiration for identification and development of other I-74 corridor aesthetic enhancement opportunities Process: As illustrated in Figure 1.3, the overall process for corridor aesthetics began traditionally with inventory and identification of potential aesthetic applications. The ADG does not document all the reports and presentations related to these early design stages, but has incorporated these efforts into the design theme, guiding principles and prioritized enhancements shown on the following pages of this report. The I-74 final design phase will incorporate these recommendations into the project. The consultant design team and representatives of the DOTs have worked with the CAAT members to facilitate community input and have helped develop recommendations for improving I-74 corridor aesthetics. CAAT recommendations have been advanced to the I-74 Advisory Committee for review and endorsement. Both DOTs have reviewed the CAAT recommendations and have endorsed the contents of this report. Figure 1.4 illustrates the status of corridor aesthetic design development. As of the date of this report, aesthetic design is approximately 50% complete. Future detailed design, cost evaluation, feasibility and prioritizations all need to occur for this process to be successfully completed.
Resumo:
This practice provides guidance and example specification language intended for use by Owner-Agencies in development of specific contract language when requiring the evaluation of tire/pavement noise for new concrete pavement surfaces. The overall sound intensity level is designated as the quality characteristic used for pay adjustment.