277 resultados para basic carbonate
Resumo:
The problem of determining the suitability of carbonate rocks as concrete aggregates is extremely complex and calls for more new data than has been available or obtainable from usual methods. Since 1955 the approach which has served as a primary basis for the project has been to gather as much new information as possible to apply to the problem. New information obtained by new and different techniques provides better understanding. This approach was decided on since, in all prior studies, a standard petrographic and petrologic approach correlated in many instances with standard engineering tests did not provide the answer in Iowa or elsewhere. One can theorize that concrete fails (excluding external causes such as traffic, foundation failure, etc.) because of stresses of internal origin. The stresses can be of a physical nature, such as frost action, or result from chemical activity such as the alkali aggregate reaction. If, as service records show, the aggregate is considered the cause of distress in concrete, it will without doubt be the manner in which an aggregate can create or contribute to stress of internal origin by physical or chemical means. Therefore the main emphasis was placed on studying physical and chemical properties of aggregates as well as the behavior of carbonate rocks in concrete environments. Although standard geologic and engineering methods were also utilized, the approach adopted required considerable effort in devising new techniques and methods. This report is intended to be a detailed summary of the research performed. Whenever possible, the work accomplished will be summarized and all pertinent data will be included. For further details, reference to the various theses and publications transmitted with this report or at previous times will be made wherever possible.
Resumo:
This report briefly describes the progress of HR-110 of the Iowa Highway Research Board.
Resumo:
This is a classed bibliography of materials by Iowans or about Iowa. It is drawn from the publications: Iowa and Some Iowans, 1988 and New Iowa Materials, 1990 to assist the needs of teachers of Iowa history and literature.
Resumo:
The major objective of this research project was to use thermal analysis techniques in conjunction with x-ray analysis methods to identify and explain chemical reactions that promote aggregate related deterioration in portland cement concrete. Twenty-two different carbonate aggregate samples were subjected to a chemical testing scheme that included: • bulk chemistry (major, minor and selected trace elements) • bulk mineralogy (minor phases concentrated by acid extraction) • solid-solution in the major carbonate phases • crystallite size determinations for the major carbonate phases • a salt treatment study to evaluate the impact of deicer salts Test results from these different studies were then compared to information that had been obtained using thermogravimetric analysis techniques. Since many of the limestones and dolomites that were used in the study had extensive field service records it was possible to correlate many of the variables with service life. The results of this study have indicated that thermogravimetric analysis can play an important role in categorizing carbonate aggregates. In fact, with modern automated thermal analysis systems it should be possible to utilize such methods on a quality control basis. Strong correlations were found between several of the variables that were monitored in this study. In fact, several of the variables exhibited significant correlations to concrete service life. When the full data set was utilized (n = 18), the significant correlations to service life can be summarized as follows ( a = 5% level): • Correlation coefficient, r, = -0.73 for premature TG loss versus service life. • Correlation coefficient, r, = 0.74 for relative crystallite size versus service life. • Correlation coefficient, r, = 0.53 for ASTM C666 durability factor versus service life. • Correlation coefficient, r, = -0.52 for acid-insoluble residue versus service life. Separation of the carbonate aggregates into their mineralogical categories (i.e., calcites and dolomites) tended to increase the correlation coefficients for some specific variables (r sometimes approached 0.90); however, the reliability of such correlations was questionable because of the small number of samples that were present in this study.
Carbonate Rock Pore Size Distribution Determination through Iowa Pore Index Testing, MLR-15-01, 2015
Resumo:
The Iowa Pore Index (IPI) measures the pore system of carbonate (limestone and dolomite) rocks using pressurized water to infiltrate the pore system. This technique provides quantitative results for the primary and capillary (secondary) pores in carbonate rocks. These results are used in conjunction with chemical and mineralogical test results to calculate a quality number, which is used as a predictor of aggregate performance in Portland cement concrete (PCC) leading to the durability classification of the aggregate. This study had two main objectives: to determine the effect different aggregate size has on IPI test results and to establish the precision of IPI test and test apparatus. It was found that smaller aggregate size fractions could be correlated to the standard 1/2”-3/4” size sample. Generally, a particle size decrease was accompanied by a slight decrease in IPI values. The IPI testing also showed fairly good agreement of the secondary pore index number between the 1/2”-3/4”and the 3/8”-1/2” fraction. The #4-3/8” showed a greater difference of the secondary number from the 1/2”-3/4” fraction. The precision of the IPI test was established as a standard deviation (Sr) of 2.85 (Primary) and 0.87 (Secondary) with a repeatability limit (%r) of 8.5% and 14.9% for the primary and secondary values, respectively.
Resumo:
Iowa Department of Education surveyed Iowa’s 15 community colleges to gain information about each institution’s basic skill assessment requirements for placement into courses and programs. The survey asked what basic skill assessment(s) each institution uses, whether developmental course placement was mandatory, and what scores students needed to obtain to avoid being required or urged to take developmental courses in math, science, and reading. Additionally, staff members at each college were asked what the testing requirements are for students’ enrolled full time in high school that are taking community college classes.
Resumo:
The major objective of this research project is to utilize thermal analysis techniques in conjunction with x-ray analysis methods to identify and explain chemical reactions that promote aggregate related deterioration in Portland cement concrete. The first year of this project has been spent obtaining and analyzing limestone and dolomite samples that exhibit a wide range of field service performance. Most of the samples chosen for the study also had laboratory durability test information (ASTM C 666, method B) that was readily available. Preliminary test results indicate that a strong relationship exists between the average crystallite size of the limestone (calcite) specimens and their apparent decomposition temperatures as measured by thermogravimetric analysis. Also, premature weight loss in the thermogravimetric analysis tests appeared to be related to the apparent decomposition temperature of the various calcite test specimens.