287 resultados para Motorcycle Crash Bars.
Resumo:
On July 1, 2005, the State of Iowa implemented a 70 mile per hour (mph) speed limit on most rural Interstates. This document reports on a study of the safety effect of this change. Changes in speeds, traffic volume on and off the rural Interstate system (diversion), and safety (crashes) for on- and off-system roads were studied. After the change, mean and 85th percentile speeds increased by about 2 mph on rural Interstates, but speeding was reduced (the number of drivers exceeding the speed limit by 10 mph decreased from 20 per cent to about 8 per cent). Daytime and nighttime serious crashes were studied for a period of 14 and a half years prior to the change and 2 and a half years afterwards. Simple descriptive statistics reveal increases in all crash severity categories for the 2 and a half year period following the speed limit increase when compared to the most recent comparable 2 and a half year period prior to the increase. When compared to longer term trends, the increases were less pronounced in some severity levels and types, and for a few severity levels the average crash frequencies were observed to decrease. However, fatal and other serious cross-median crashes increased by relatively larger amounts as compared to expected random variation. The study also analyzed crash frequencies grouped into six-month periods, revealing similar findings.
Resumo:
The main objective of this study was to utilize light detection and ranging (LIDAR) technology to obtain highway safety-related information. The safety needs of older drivers in terms of prolonged reaction times were taken into consideration. The tasks undertaken in this study were (1) identification of crashes that older drivers are more likely to be involved in, (2) identification of highway geometric features that are important in such crashes, (3) utilization of LIDAR data for obtaining information on the identified highway geometric features, and (4) assessment of the feasibility of using LIDAR data for such applications. A review of previous research indicated that older drivers have difficulty negotiating intersections, and it was recognized that intersection sight triangles were critical to safe intersection negotiation. LIDAR data were utilized to obtain information on potential sight distance obstructions at six selected intersections located on the Iowa Highway 1 corridor by conducting in-office line-of-sight analysis. Crash frequency, older driver involvement, and data availability were considerations in the selection of the six intersections. Results of the in-office analysis were then validated by visiting the intersections in the field. Sixty-six potential sight distance obstructions were identified by the line-of-sight analysis, out of which 62 (89.8%) were confirmed while four (5.8%) were not confirmed by the video. At least three (4.4%) potential sight distance obstructions were discovered in the video that were not detected by the line-of-sight analysis. The intersection with the highest crash frequency involving older drivers was correctly found to have obstructions located within the intersection sight triangles. Based on research results, it is concluded that LIDAR data can be utilized for identifying potential sight distance obstructions at intersections. The safety of older drivers can be enhanced by locating and rectifying intersections with obstructions in sight triangles.
Resumo:
This report presents the results of a literature review conducted to evaluate differences in seat belt use by race. A literature review was conducted to evaluate overall seat belt use, racial differences in seat belt use, overall child restraint use, racial differences in child restraint use, and information about seat belt and child restraint use specific to Iowa. A number of national studies and regional studies were found and are presented. Mixed results were found as to whether racial differences exist in both seat belt use and child restraint use. However, in the course of the literature review, several items that are of interest to safety in Iowa have emerged, although little data specific to Iowa was encountered. First, national seat belt use appears to be lower among African-Americans than for Caucasians or Hispanics. Second, national crash rates among Hispanics appear to be higher than those for Caucasians, particularly when population and lower vehicle miles traveled (VMT) are considered. One issue that should be considered throughout this literature review is that the Hispanic population may be higher than reported due to large numbers of undocumented persons who do not appear in population estimates, driver’s license, or other databases.
Resumo:
Single vehicle run-off-road (ROR) crashes are the largest type of fatal passenger vehicle crash in the United States (NCHRP 500 2003). In Iowa, ROR crashes accounted for 36% of rural crashes and 9% of total crashes in 2006. Run-off-road crashes accounted for more than 61.8% of rural fatal crashes and 32.6% of total fatal crashes in Iowa in 2006. Paved shoulders are a potential countermeasure for ROR crashes. Several studies are available which have generally indicated that paved shoulders are effective in reducing crashes. However, the number of studies that quantify the benefits are limited. The research described in this report evaluates the effectiveness of paved shoulders. Model results indicated that covariate for speed limit was not significant at the 0.05 confidence level and was removed from the model. All other variables which resulted in the final model were significant at the 0.05 confidence level. The final model indicated that season of the year was significant in indicating expected number of total monthly crashes with a higher number of crashes occurring in the winter and fall than for spring and summer. The model also indicated that presence of rumble strips, paved shoulder width, unpaved shoulder width, and presence of a divided median were correlated with a decrease in crashes. The model also indicated that roadway sections with paved shoulders had fewer crashes in the after period as compared to both the before period and control sections. The actual impact of paved shoulders depends on several other covariates as indicated in the final model such as installation year and width of paved shoulders. However, comparing the expected number of total crashes before and after installation of paved shoulders for several scenarios indicated around a 4.6% reduction in the expected number of monthly crashes in the after period.
Resumo:
A section of US 52 between Dubuque and Luxemburg, Iowa, was listed in the top 5% of Iowa highways for severe crashes involving impaired drivers and single vehicle run-off-road crashes during 2001–2005, and several crashes have occurred on this roadway near the towns of Luxemburg, Holy Cross, and Rickardsville, Iowa, many on curves. Staff and officials from the Iowa Department of Transportation (Iowa DOT), Iowa State Patrol, Governor’s Traffic Safety Bureau, Federal Highway Administration, Center for Transportation Research and Education Dubuque County, and a retired fire chief met to review crash data and discuss potential safety improvements to U.S. Highway 52. This report outlines the findings and recommendations of the road safety audit team to address the safety concerns on this US 52 corridor and explains several mitigation strategies that the Iowa DOT District 6 Office has selected.
Resumo:
This project evaluated the effectiveness of the Iowa Graduated Driver’s Licensing (GDL) program in reducing crashes for teenage drivers during a four-year period before and after implementation of GDL. The report presents a review of the literature on teenage drivers, crash rates, and graduated driver’s licensing programs around the country, followed by an analysis of teenage drivers and crash risk before and after implementation of GDL in Iowa.
Resumo:
The Federal Highway Administration estimates that red light running causes more than 100,000 crashes and 1,000 fatalities annually and results in an estimated economic loss of over $14 billion per year in the United States. In Iowa alone, a statewide analysis of red light running crashes, using crash data from 2001 to 2006, indicates that an average of 1,682 red light running crashes occur at signalized intersections every year. As a result, red light running poses a significant safety issue for communities. Communities rarely have the resources to place additional law enforcement in the field to combat the problem and they are increasingly using automated red light running camera-enforcement systems at signalized intersections. In Iowa, three communities currently use camera enforcement since 2004. These communities include Davenport, Council Bluffs, and Clive. As communities across the United States attempt to address red light running, a number of communities have implemented red light running camera enforcement programs. This report examines the red light running programs in Iowa and summarizes results of analyses to evaluate the effectiveness of such cameras.
Resumo:
Several recent studies have demonstrated differences in safety between different types of left-turn phasing—protected, permitted, and protected/permitted phasing. The issue in question is whether older and younger drivers are more affected by a particular type of left-turn phasing at high-speed signalized intersections and whether they are more likely to contribute to a left-turn related crash under a specific type of left-turn phasing. This study evaluated the impact of different types of left-turn phasing on older and younger drivers at high-speed signalized intersections in Iowa. High-speed signalized intersections were of interest since oncoming speeds and appropriate gaps may be more difficult to judge for older drivers and those with less experience. A total of 101 intersections from various urban locations in Iowa with at least one intersecting roadway with a posted speed limit of 45 mph or higher were evaluated. Left-turn related crashes from 2001 to 2003 were evaluated. Left-turn crash rate and severity for young drivers (14- to 24-year-old), middle-age drivers (25- to 64-year-old), and older drivers (65 years and older) were calculated. Poisson regression was used to analyze left-turn crash rates by age group and type of phasing. Overall, left-turn crash rates indicated that protected phasing is much safer than protected/permitted and permitted phasing. Protected/permitted phasing had the highest left-turn crash rates overall.
Resumo:
Numerous strategies have been experimented with nationwide in an attempt to reduce the overall number of pedestrian-vehicle crashes, especially in instances where improper crossing or failure to yield was the proximate cause of the crash. Some of these measures include overhead signs, flashing warning beacons, advanced crossing signs, more visible pavement markings, in-street “Yield to Pedestrian” signs, and more recently, in-pavement flashing lights. Pedestrian safety has been a key issue for the City of Cedar Rapids, Iowa, in particular at non-controlled intersections and mid-block crossings. In 2002, the city council gave preliminary approval to implement a pedestrian-actuated overhead flasher system in conjunction with an in-pavement flasher system at the intersection of 1st Avenue NE and 4th Street NE in the downtown central business district. This location is uncontrolled and has several elements that can create conflicts between pedestrians, vehicles, and trains that service local industry. This report summarizes the results from a small-scale study completed by CTRE to evaluate the effectiveness of the in-pavement flasher system installed in downtown Cedar Rapids. The installation of in-pavement flashing warning lights at the pedestrian crosswalk at this site has had a net positive effect on the safety characteristics of the location. The results of this study show a marked improvement in motorist compliance with the state law requiring that motorists yield to pedestrians in the crosswalk. The pedestrian and motorist surveys show that both groups felt the in-pavement flashing lights have increased motorist awareness, especially at night. The data indicate the in-pavement flashing warning lights improved the motorists' response to pedestrians in the area, and that the system could be operational throughout summer and winter conditions.
Resumo:
In April 2008 a preliminary investigation of fatal and major injury crashes on Iowa’s primary road system from 2001 through 2007 was conducted by the Iowa Department of Transportation, Office of Traffic and Safety. A mapping of these data revealed an apparent concentration of these serious crashes on a section of Iowa 25 north of Creston. Based on this information, a road safety audit of this roadway section was requested by the Office of Traffic and Safety. Iowa 25 is a two-lane asphaltic concrete pavement roadway, 22 ft in width with approximately 6 ft wide granular shoulders. Originally constructed in 1939, the roadway was last rehabilitated in 1996 with a 4-in. asphalt overlay. Except for shoulder paving through a curve area, no additional work beyond routine maintenance has been accomplished in the section. The 2004 traffic map indicates that IA 25 has a traffic volume of approximately 2070 vehicles per day with 160 commercial vehicles. The posted speed is 55 mph. This report contains a discussion of audit team findings, crash and roadway data, and recommendations for possible mitigation of safety concerns for this roadway section.
Resumo:
Approximately 13.2 miles of US 6 in eastern Iowa extends from the east corporate limits of Iowa City, Iowa, to the west corporate limits of West Liberty, Iowa. This segment of US 6 is a service level B primary highway, with an annual daily traffic volume varying from 3,480 vehicles per day (vpd) to 5,700 vpd. According to 2001–2007 crash density data from the Iowa Department of Transportation (Iowa DOT), the corridor is currently listed among the top 5% of non-freeway Iowa DOT roads in several crash categories, including crashes involving excessive speed, impaired drivers, single-vehicle run-off-road, and multiple-vehicle crossed centerline. A road safety audit of this corridor was deemed appropriate by the Iowa Department of Transportation’s Office of Traffic and Safety. Staff and officials from the Iowa DOT, Iowa State Patrol, Governor’s Traffic Safety Bureau, Federal Highway Administration, Center for Transportation Research and Education, and several local law enforcement and transportation agencies met to review crash data and discuss potential safety improvements to this segment of US 6. This report outlines the findings and recommendations of the road safety audit team to address the safety concerns on this US 6 corridor and explains several selected mitigation strategies.
Resumo:
U.S. Highway 61 between Muscatine and Davenport, Iowa, is a four-lane divided section of road approximately 21 miles in length. This section was found to be among the top 5% of Iowa roadways for single-vehicle run-off-road, impaired driver, unbelted driver, and speed-related crashes for the period of 2001 through 2005. A road safety audit of this corridor was deemed appropriate by the Iowa Department of Transportation’s Office of Traffic and Safety. Staff and officials from the Iowa Department of Transportation (Iowa DOT), Iowa State Patrol, Governor’s Traffic Safety Bureau, Federal Highway Administration, Center for Transportation Research and Education, and several local law enforcement and transportation agencies met to review crash data and discuss potential safety improvements to US 61. This report outlines the findings and recommendations of the road safety audit team to address the safety concerns on this US 61 corridor and explains several selected mitigation strategies.
Resumo:
On the October 7 and 8, 2008, a road safety audit was conducted for the intersection of US 61/Harrison Street and West Locust Street in Davenport, Iowa. US 61/Harrison Street is a one-way street and a principal arterial route through Davenport, with three southbound lanes. Locust Street is a four-lane, two-way minor arterial running across the city from west to east. The last major improvement at this intersection was implemented approximately 20 years ago. The Iowa Department of Transportation requested a safety audit of this intersection in response to a high incidence of crashes at the location over the past several years, in view of the fact that no major improvements are anticipated for this intersection in the immediate future. The road safety audit team discussed current conditions at the intersection and reviewed the last seven years of crash data. The team also made daytime and nighttime field visits to the intersection to examine field conditions and observe traffic flow and crossing guard operations with younger pedestrians. After discussing key issues, the road safety audit team drew conclusions and suggested possible enforcement, engineering, public information, and educational strategies for mitigation.
Resumo:
A road safety audit was conducted for a 7.75 mile section of County Road X-37 in Louisa County, Iowa. In 2006, the average annual daily traffic on this roadway was found to be 680 vehicles per day. Using crash data from 2001 to 2007, the Iowa Department of Transportation (Iowa DOT) has identified this roadway as being in the highest 5% of local rural roads in Iowa for single-vehicle runoff- road crashes. Considering these safety data, the Louisa County Engineer requested that a road safety audit be conducted to identify areas of safety concerns and recommend low-cost mitigation to address those concerns. Staff and officials from the Iowa DOT, Governor’s Traffic Safety Bureau, Federal Highway Administration, Institute for Transportation, and local law enforcement and transportation agencies met to review crash data and discuss potential safety improvements to this segment of X-37. This report outlines the findings and recommendations of the road safety audit team to address the safety concerns on this X-37 corridor and explain several selected mitigation strategies.
Resumo:
A road safety audit was conducted for a seven-mile section of County Road W-55 in Washington County, Iowa. In 2006, the average annual daily traffic on this roadway was found to be 1,290 vehicles per day. Using crash data from 2001 to 2007, the Iowa Department of Transportation (Iowa DOT) has identified this roadway as being in the top 5% of Iowa secondary rural roads with the highest density of serious (fatal and major injury) crashes for single-vehicle run-off-road incidents. Considering these safety data, the Washington County Engineer requested that a road safety audit be conducted to identify areas with safety concerns and to recommend low-cost mitigation to address those concerns. Staff and officials from the Iowa DOT, Iowa State Patrol, Governor’s Traffic Safety Bureau, Federal Highway Administration, Institute for Transportation, and local law enforcement and transportation agencies met to review crash data and discuss potential safety improvements to this segment of W-55. This report outlines the findings and recommendations of the road safety audit team to address the safety concerns on this W-55 corridor and explain several selected mitigation strategies.