243 resultados para Asphalt Permeability
Resumo:
During the processing of limestone to produce commercial aggregates, a significant amount of waste limestone screenings is produced. This waste material cannot be used in highway construction because it does not meet current highway specifications. The purpose of this research was to determine if a waste limestone screenings/emulsion mix could be used to construct a base capable of supporting local traffic. A 1.27 mile section of roadway in Linn County was selected for this research. The road was divided into seven sections. Six of the sections were used to test 4" and 6" compacted base thicknesses containing 2.5%, 3.5%, and 4.5% residual asphalt contents. The seventh section was a control section containing untreated waste limestone screenings.
Resumo:
The Mechanistic-Empirical Pavement Design Guide (MEPDG) was developed under National Cooperative Highway Research Program (NCHRP) Project 1-37A as a novel mechanistic-empirical procedure for the analysis and design of pavements. The MEPDG was subsequently supported by AASHTO’s DARWin-ME and most recently marketed as AASHTOWare Pavement ME Design software as of February 2013. Although the core design process and computational engine have remained the same over the years, some enhancements to the pavement performance prediction models have been implemented along with other documented changes as the MEPDG transitioned to AASHTOWare Pavement ME Design software. Preliminary studies were carried out to determine possible differences between AASHTOWare Pavement ME Design, MEPDG (version 1.1), and DARWin-ME (version 1.1) performance predictions for new jointed plain concrete pavement (JPCP), new hot mix asphalt (HMA), and HMA over JPCP systems. Differences were indeed observed between the pavement performance predictions produced by these different software versions. Further investigation was needed to verify these differences and to evaluate whether identified local calibration factors from the latest MEPDG (version 1.1) were acceptable for use with the latest version (version 2.1.24) of AASHTOWare Pavement ME Design at the time this research was conducted. Therefore, the primary objective of this research was to examine AASHTOWare Pavement ME Design performance predictions using previously identified MEPDG calibration factors (through InTrans Project 11-401) and, if needed, refine the local calibration coefficients of AASHTOWare Pavement ME Design pavement performance predictions for Iowa pavement systems using linear and nonlinear optimization procedures. A total of 130 representative sections across Iowa consisting of JPCP, new HMA, and HMA over JPCP sections were used. The local calibration results of AASHTOWare Pavement ME Design are presented and compared with national and locally calibrated MEPDG models.
Resumo:
This document summarizes the discussion and findings of the 4th workshop held on October 27–28, 2015 in Frankfort, Kentucky as part of the Technology Transfer Intelligent Compaction Consortium (TTICC) Transportation Pooled Fund (TPF-5(233)) study. The TTICC project is led by the Iowa Department of Transportation (DOT) and partnered by the following state DOTs: California, Georgia, Iowa, Kentucky, Missouri, Ohio, Pennsylvania, Virginia, and Wisconsin. The workshop was hosted by the Kentucky Transportation Cabinet and was organized by the Center for Earthworks Engineering Research (CEER) at Iowa State University of Science and Technology. The objective of the workshop was to generate a focused discussion to identify the research, education, and implementation goals necessary for advancing intelligent compaction for earthworks and asphalt. The workshop consisted of a review of the TTICC goals, state DOT briefings on intelligent compaction implementation activities in their state, voting and brainstorming sessions on intelligent compaction road map research and implementation needs, and identification of action items for TTICC, industry, and Federal Highway Administration (FHWA) on each of the road map elements to help accelerate implementation of the technology. Twenty-three attendees representing the state DOTs participating in this pooled fund study, the FHWA, Iowa State University, University of Kentucky, and industry participated in this workshop.