369 resultados para Pavement recycling
Resumo:
This report presents the results of the largest and most comprehensive study to date on portland cement pervious concrete (PCPC). It is designed to be widely accessible and easily applied by designers, producers, contractors, and owners. The project was designed to begin with pervious concrete best practices and then to address the unanswered questions in a systematic fashion to allow a successful overlay project. Consequently, the first portion of the integrated project involved a combination of fundamental material property investigations, test method development, and addressing constructability issues before actual construction could take place. The second portion of the project involved actual construction and long-term testing before reporting successes, failures, and lessons learned. The results of the studies conducted show that a pervious concrete overlay can be designed, constructed, operated, and maintained. A pervious concrete overlay has several inherent advantages, including reduced splash and spray and reduced hydroplaning potential, as well as being a very quiet pavement. The good performance of this overlay in a particularly harsh freeze-thaw climate, Minnesota, shows pervious concrete is durable and can be successfully used in freeze-thaw climates with truck traffic and heavy snow plowing.
Resumo:
Data collection to determine the rate of bond strength development between concrete overlays and existing pavements and the evaluation of nondestructive testing methods for determining concrete strength were the objectives of this study. Maturity meters and pulse velocity meters were employed to determine the rate of flexural strength gain and determine the time for opening of newly constructed pavements to traffic. Maturity measurements appear to provide a less destructive method of testing. Pulse velocity measurements do require care in the preparation of the test wells and operator care in testing. Both devices functioned well under adverse weather and construction conditions and can reduce construction traffic delay decisions. Deflection testing and strain gaging indicate differences in the reaction of the overlay and existing pavement under grouting versus nongrouted sections. Grouting did enhance the rate of bond development with Type I11 cement out performing the Type I1 grout section. Type I11 and Type I1 cement grouts enhanced resistance to cracking in uniformly supported pavements where joints are prepared prior to overlays achieving target flexural strengths. Torsional and direct shear testing provide additional ways of measuring bond development at different cure times. Detailed data analysis will be utilized by TRANSTEC, Inc. to develop a bonded overlay construction guidelines report.
Resumo:
The major objective of this research project was to investigate the chemistry and morphology of portland cement concrete pavements in Iowa. The integrity of the various pavements was evaluated qualitatively, based on the presence or absence of microcracks, the presence or absence of sulfate minerals, and the presence or absence of alkali-silica gel(s). Major equipment delays and subsequent equipment replacements resulted in significant delays over the course of this research project. However, all these details were resolved and the equipment is currently in place and fully operational. The equipment that was purchased for this project included: (I) a LECO VP 50, 12-inch diameter, variable speed grinder/polisher: (2) a Hitachi S-2460N variable pressure scanning electron microscope; and (3) a OXFORD Instruments Link ISIS microanalysis system with a GEM (high-purity germanium) X-ray detector. This study has indicated that many of the concrete pavements contained evidence of multiple deterioration mechanisms: and hence, the identification of a single reason for the distress that was observed in any given pavement typically had to be based on opinion rather than empirical evidence.
Resumo:
The purpose of this guide is to help practitioners understand how to optimize concrete pavement joint performance through the identification, mitigation, and prevention of joint deterioration. It summarizes current knowledge from research and practice to help practitioners access the latest knowledge and implement proven techniques. Emphasizing that water is the common factor in most premature joint deterioration, this guide describes various types of joint deterioration that can occur. Some distresses are caused by improper joint detailing or construction, and others can be attributed to inadequate materials or proportioning. D cracking is a form of joint distress that results from the use of poor-quality aggregates. A particular focus in this guide is joint distress due to freeze-thaw action. Numerous factors are at play in the occurrence of this distress, including the increased use of a variety of deicing chemicals and application strategies. Finally, this guide provides recommendations for minimizing the potential for joint deterioration, along with recommendations for mitigation practices to slow or stop the progress of joint deterioration.
Resumo:
This guide provides a summary of the factors and design theories that should be considered when designing dowel load transfer systems for concrete pavement systems (including dowel basket design and fabrication) and presents recommendations for widespread adoption (i.e., standardization). Development of the guide was sponsored by the National Concrete Consortium with the goal of helping practitioners develop and implement dowel load transfer designs based on knowledge about current research and best practices.
Resumo:
Moisture sensitivity of Hot Mix Asphalt (HMA) mixtures, generally called stripping, is a major form of distress in asphalt concrete pavement. It is characterized by the loss of adhesive bond between the asphalt binder and the aggregate (a failure of the bonding of the binder to the aggregate) or by a softening of the cohesive bonds within the asphalt binder (a failure within the binder itself), both of which are due to the action of loading under traffic in the presence of moisture. The evaluation of HMA moisture sensitivity has been divided into two categories: visual inspection test and mechanical test. However, most of them have been developed in pre-Superpave mix design. This research was undertaken to develop a protocol for evaluating the moisture sensitivity potential of HMA mixtures using the Nottingham Asphalt Tester (NAT). The mechanisms of HMA moisture sensitivity were reviewed and the test protocols using the NAT were developed. Different types of blends as moisture-sensitive groups and non-moisture-sensitive groups were used to evaluate the potential of the proposed test. The test results were analyzed with three parameters based on performance character: the retained flow number depending on critical permanent deformation failure (RFNP), the retained flow number depending on cohesion failure (RFNC), and energy ratio (ER). Analysis based on energy ratio of elastic strain (EREE ) at flow number of cohesion failure (FNC) has higher potential to evaluate the HMA moisture sensitivity than other parameters. If the measurement error in data-acquisition process is removed, analyses based on RFNP and RFNC would also have high potential to evaluate the HMA moisture sensitivity. The vacuum pressure saturation used in AASHTO T 283 and proposed test has a risk to damage specimen before the load applying.
Resumo:
Highway safety and pavement performance can be directly influenced by the type of shoulders that are constructed. Shoulder design alternatives have always been rather limited. Moreover, the use of some of the alternatives has always been restricted by funding limitations. This research project seeks to explore the use of modified macadam base construction for shoulders. This type of shoulder design could offer the designer another option when paved or stabilized shoulders are being considered. Macadam base construction has in the past been shown to be quite strong and free draining. Two macadam base shoulder designs were developed and constructed for this research project. A new roadway embankment and P.C.C. pavement were constructed on a section of US 6 east of Adel in Dallas County. The macadam base shoulders were constructed adjacent to the pavement as part of the project. The north shoulder was finished with a choke stone course and bituminous surface treatment and the south shoulder was finished with a two (2) inch layer of Type B Class I1 asphalt concrete. Macadam stone base shoulders can be built with relatively minor construction problems with comparable strength and less cost than asphalt treated base shoulders. The macadam stone base shoulders have performed well with very little maintenance necessary. The improved drainage substantially reduces deterioration of the pavement joints.
Resumo:
This report documents Phase IV of the Highway Maintenance Concept Vehicle (HMCV) project, a pooled fund study sponsored by the Departments of Transportation of Iowa, Pennsylvania, and Wisconsin. This report provides the background, including a brief history of the earlier phases of the project, a systems overview, and descriptions of the research conducted in Phase IV. Finally, the report provides conclusions and recommendations for future research. Background The goal of the Highway Maintenance Concept Vehicle Pooled Fund Study is to provide travelers with the level of service defined by policy during the winter season at the least cost to taxpayers. This goal is to be accomplished by using information regarding actual road conditions to facilitate and adjust snow and ice control activities. The approach used in this study was to bring technology applications from other industries to the highway maintenance vehicle. This approach is evolutionary in that as emerging technologies and applications are found to be acceptable to the pooled fund states and as they appear that to have potential for supporting the study goals they become candidates for our research. The objective of Phase IV is to: Conduct limited deployment of selected technologies from Phase III by equipping a vehicle with proven advanced technologies and creating a mobile test laboratory for collecting road weather data. The research quickly pointed out that investments in winter storm maintenance assets must be based on benefit/cost analysis and related to improving level of service. For example, Iowa has estimated the average cost of fighting a winter storm to be about $60,000 to $70,000 per hour typically. The maintenance concept vehicle will have advanced technology equipment capable of applying precisely the correct amount of material, accurately tailored to the existing and predicted pavement conditions. Hence, a state using advanced technology could expect to have a noticeable impact on the average time taken to establish the winter driving service level. If the concept vehicle and data produced by the vehicle are used to support decision-making leading to reducing material usage and the average time by one hour, a reasonable benefit/cost will result. Data from the friction meter can be used to monitor and adjust snow and ice control activities and inform travelers of pavement surface conditions. Therefore, final selection of successfully performing technologies will be based on the foundation statements and criteria developed by the study team.
Resumo:
The major objective of this research project was to investigate the chemistry and morphology of portland cement concrete pavements in Iowa. The integrity of the various pavements was evaluated qualitatively, based on the presence or absence of microcracks, the presence or absence of sulfate minerals, and the presence or absence of alkali-silica gel(s). Major equipment delays and subsequent equipment replacements resulted in significant delays over the course of this research project. However, all these details were resolved and the equipment is currently in place and fully operational. The equipment that was purchased for this project included: ( I ) a LECO VP 50, 12-inch diameter, variable speed grinder/polisher: (2) a Hitachi S-2460N variable pressure scanning electron microscope; and (3) a OXFORD Instruments Link ISIS microanalysis system with a GEM (high-purity germanium) X-ray detector. This study has indicated that many of the concrete pavements contained evidence of multiple deterioration mechanisms: and hence, the identification of a single reason for the distress that was observed in any given pavement typically had to be based on opinion rather than empirical evidence.
Resumo:
This report describes the results of the research project investigating the use of advanced field data acquisition technologies for lowa transponation agencies. The objectives of the research project were to (1) research and evaluate current data acquisition technologies for field data collection, manipulation, and reporting; (2) identify the current field data collection approach and the interest level in applying current technologies within Iowa transportation agencies; and (3) summarize findings, prioritize technology needs, and provide recommendations regarding suitable applications for future development. A steering committee consisting oretate, city, and county transportation officials provided guidance during this project. Technologies considered in this study included (1) data storage (bar coding, radio frequency identification, touch buttons, magnetic stripes, and video logging); (2) data recognition (voice recognition and optical character recognition); (3) field referencing systems (global positioning systems [GPS] and geographic information systems [GIs]); (4) data transmission (radio frequency data communications and electronic data interchange); and (5) portable computers (pen-based computers). The literature review revealed that many of these technologies could have useful applications in the transponation industry. A survey was developed to explain current data collection methods and identify the interest in using advanced field data collection technologies. Surveys were sent out to county and city engineers and state representatives responsible for certain programs (e.g., maintenance management and construction management). Results showed that almost all field data are collected using manual approaches and are hand-carried to the office where they are either entered into a computer or manually stored. A lack of standardization was apparent for the type of software applications used by each agency--even the types of forms used to manually collect data differed by agency. Furthermore, interest in using advanced field data collection technologies depended upon the technology, program (e.g.. pavement or sign management), and agency type (e.g., state, city, or county). The state and larger cities and counties seemed to be interested in using several of the technologies, whereas smaller agencies appeared to have very little interest in using advanced techniques to capture data. A more thorough analysis of the survey results is provided in the report. Recommendations are made to enhance the use of advanced field data acquisition technologies in Iowa transportation agencies: (1) Appoint a statewide task group to coordinate the effort to automate field data collection and reporting within the Iowa transportation agencies. Subgroups representing the cities, counties, and state should be formed with oversight provided by the statewide task group. (2) Educate employees so that they become familiar with the various field data acquisition technologies.
Resumo:
When concrete deterioration begins to occur in highway pavement, repairs become necessary to assure the rider safety, extend its useful life and restore its riding qualities. One rehabilitation technique used to restore the pavement to acceptable highway standards is to apply a thin portland cement concrete (PCC) overlay to the existing pavement. First, any necessary repairs are made to the existing pavement, the surface is then prepared, and the PCC overlay is applied. Brice Petrides-Donohue, Inc. (Donohue) was retained by the Iowa Department of Transportation (IDOT) to evaluate the present condition with respect to debonding of the PCC overlay at fifteen sites on Interstate 80 and State Highway 141 throughout the State of Iowa. This was accomplished by conducting an infrared thermographic and ground penetrating radar survey of these sites which were selected by the Iowa Department of Transportation. The fifteen selected sites were all two lanes wide and one-tenth of a mile long, for a total of three lane miles or 190,080 square feet. The selected sites are as follows: On Interstate 80 Eastbound, from milepost 35.25 to 35.35, milepost 36.00 to 36.10, milepost 37.00 to 37.10, milepost 38.00 to 38.10 and milepost 39.00 to 39.10, on State Highway 141 from milepost 134.00 to 134.10, milepost 134.90 to milepost 135.00, milepost 135.90 to 136.00, milepost 137.00 to 137.10 and milepost 138.00 to 138.10, and on Interstate 80 Westbound from milepost 184.00 to 184.10, milepost 185.00 to 185.10, milepost 186.00 to 186.10, milepost 187.00 to 187.10, and from milepost 188.00 to 188.10.
Resumo:
The quadrennial need study was developed to assist in identifying county highway financial needs (construction, rehabilitation, maintenance, and administration) and in the distribution of the road use tax fund (RUTF) among the counties in the state. During the period since the need study was first conducted using HWYNEEDS software, between 1982 and 1998, there have been large fluctuations in the level of funds distributed to individual counties. A recent study performed by Jim Cable (HR-363, 1993), found that one of the major factors affecting the volatility in the level of fluctuations is the quality of the pavement condition data collected and the accuracy of these data. In 1998, the Center for Transportation Research and Education researchers (Maze and Smadi) completed a project to study the feasibility of using automated pavement condition data collected for the Iowa Pavement Management Program (IPMP) for the paved county roads to be used in the HWYNEEDS software (TR-418). The automated condition data are objective and also more current since they are collected in a two year cycle compared to the 10-year cycle used by HWYNEEDS right now. The study proved the use of the automated condition data in HWYNEEDS would be feasible and beneficial in educing fluctuations when applied to a pilot study area. In another recommendation from TR-418, the researchers recommended a full analysis and investigation of HWYNEEDS methodology and parameters (for more information on the project, please review the TR-418 project report). The study reported in this document builds on the previous study on using the automated condition data in HWYNEEDS and covers the analysis and investigation of the HWYNEEDS computer program methodology and parameters. The underlying hypothesis for this study is thatalong with the IPMP automated condition data, some changes need to be made to HWYNEEDS parameters to accommodate the use of the new data, which will stabilize the process of allocating resources and reduce fluctuations from one quadrennial need study to another. Another objective of this research is to investigate the gravel roads needs and study the feasibility of developing a more objective approach to determining needs on the counties gravel road network. This study identifies new procedures by which the HWYNEEDS computer program is used to conduct the quadrennial needs study on paved roads. Also, a new procedure will be developed to determine gravel roads needs outside of the HWYNEED program. Recommendations are identified for the new procedures and also in terms of making changes to the current quadrennial need study. Future research areas are also identified.
Resumo:
The present research project was designed to determine thermal properties, such as coefficient of thermal expansion (CTE) and thermal conductivity, of Iowa concrete pavement materials. These properties are required as input values by the Mechanistic-Empirical Pavement Design Guide (MEPDG). In this project, a literature review was conducted to determine the factors that affect thermal properties of concrete and the existing prediction equations for CTE and thermal conductivity of concrete. CTE tests were performed on various lab and field samples of portland cement concrete (PCC) at the Iowa Department of Transportation and Iowa State University. The variations due to the test procedure, the equipment used, and the consistency of field batch materials were evaluated. The test results showed that the CTE variations due to test procedure and batch consistency were less than 5%, and the variation due to the different equipment was less than 15%. Concrete CTE values were significantly affected by different types of coarse aggregate. The CTE values of Iowa concrete made with limestone+graval, quartzite, dolomite, limestone+dolomite, and limestone were 7.27, 6.86, 6.68, 5.83, and 5.69 microstrain/oF (13.08, 12.35, 12.03, 10.50, and 10.25 microstrain/oC), respectively, which were all higher than the default value of 5.50 microstrain/oF in the MEPDG program. The thermal conductivity of a typical Iowa PCC mix and an asphalt cement concrete (ACC) mix (both with limestone as coarse aggregate) were tested at Concrete Technology Laboratory in Skokie, Illinois. The thermal conductivity was 0.77 Btu/hr•ft•oF (1.33 W/m•K) for PCC and 1.21 Btu/hr•ft•oF (2.09 W/m•K) for ACC, which are different from the default values (1.25 Btu/hr•ft•oF or 2.16 W/m•K for PCC and 0.67 Btu/hr•ft•oF or 1.16 W/m•K for ACC) in the MEPDG program. The investigations onto the CTE of ACC and the effects of concrete materials (such as cementitious material and aggregate types) and mix proportions on concrete thermal conductivity are recommended to be considered in future studies.
Resumo:
This investigation was initiated to determine the causes of a rutting problem that occurred on Interstate 80 in Adair County. 1-80 from Iowa 25 to the Dallas County line was opened to traffic in November, 1960. The original pavement consisted of 4-1/2" of asphalt cement concrete over 12" of rolled stone base and 12" of granular subbase. A 5-1/2" overlay of asphalt cement concrete was placed in 1964. In 1970-1972, the roadway was resurfaced with 3" of asphalt cement concrete. In 1982, an asphalt cement concrete inlay, designed for a 10-year life, was placed in the eastbound lane. The mix designs for all courses met or exceeded all current criteria being used to formulate job mixes. Field construction reports indicate .that asphalt usage, densities, field voids and filler bitumen determinations were well within specification limits on a very consistent basis. Field laboratory reports indicate that laboratory voids for the base courses were within the prescribed limits for the base course and below the prescribed limits for the surface course. Instructional memorandums do indicate that extreme caution should be exercised when the voids are at or near the lower limits and traffic is not minimal. There is also a provision that provides for field voids controlling when there is a conflict between laboratory voids and field voids. It appears that contract documents do not adequately address the directions that must be taken when this conflict arises since it can readily be shown that laboratory voids must be in the very low or dangerous range if field voids are to be kept below the maximum limit under the current density specifications. A rut depth survey of January, 1983, identified little or no rutting on this section of roadway. Cross sections obtained in October, 1983, identified rutting which ranged from 0 to 0.9" with a general trend of the rutting to increase from a value of approximately 0.3" at MP 88 to a rut depth of 0.7" at MP 98. No areas of significant rutting were identified in the inside lane. Structural evaluation with the Road Rater indicated adequate structural capacity and also indicated that the longitudinal subdrains were functioning properly to provide adequate soil support values. Two pavement sections taken from the driving lane indicated very little distortion in the lower 7" base course. Essentially all of the distortion had occurred in the upper 2" base course and the 1..;1/2" surface course. Analysis of cores taken from this section of Interstate 80 indicated very little densification of either the surface or the upper or lower base courses. The asphalt cement content of both the Type B base courses and the Type A surface course were substantially higher than the intended asphalt cement content. The only explanation for this is that the salvaged material contained a greater percent of asphalt cement than initial extractions indicated. The penetration and viscosity of the blend of new asphalt cement and the asphalt cement recovered from the salvaged material were relatively close to that intended for this project. The 1983 ambient temperatures were extremely high from June 20 through September 10. The rutting is a result of a combination of adverse factors including, (1) high asphalt content, (2) the difference between laboratory and field voids, (3) lack of intermediate sized crushed particles, (4) high ambient temperatures. The high asphalt content in the 2" upper base course produced an asphalt concrete mix that did not exhibit satisfactory resistance to deformation from heavy loading. The majority of the rutting resulted from distortion of the 2" upper base lift. Heater planing is recommended as an interim corrective action. Further recommendation is to design for a 20-year alternative by removing 2-1/2" of material from the driving lane by milling and replacing with 2-1/2" of asphalt concrete with improved stability. This would be .followed by placing 1-1/2" of high quality resurfacing on the entire roadway. Other recommendations include improved density and stability requirements for asphalt concrete on high traffic roadways.
Resumo:
Single-vehicle run-off-road crashes are the most common crash type on rural two-lane Iowa roads. Rumble strips have proven effective in mitigating these crashes, but the strips are commonly installed in paved shoulders on higher-volume roads that are owned by the State of Iowa. Lower-volume paved rural roads owned by local agencies do not commonly feature paved shoulders but frequently experience run-off-road crashes. This project involved installing rumble stripes, which are a combination of conventional rumble strips with a painted edge line placed on the surface of the milled area, along the edge of the travel lanes, but at a narrow width to avoid possible intrusion into the normal vehicle travel paths. The research described in this report was part of a project funded by the Federal Highway Administration, Iowa Highway Research Board, and Iowa Department of Transportation to evaluate the effectiveness of edge-line rumble strips in Iowa. The project evaluated the effectiveness of rumble stripes in reducing run-off-road crashes and in improving the longevity and wet-weather visibility of edge-line markings. This project consisted of two phases. The first phase was to select pilot study locations, select a set of test sites, install rumble stripes, summarize lessons learned during installation, and provide a preliminary assessment of the rumble stripes’ performance. The purpose of this report was to document results from Phase II. A before and after crash analysis was conducted to assess whether use of the treatment had resulted in fewer crashes. However, due to low sample size, results of the analysis were inconclusive. Lateral position was also evaluated before and after installation of the treatment to determine whether vehicles engaged in better lane keeping. Pavement marking wear was also assessed.