267 resultados para Special loads
Resumo:
Report on a special investigation of the City of Sloan for the period May 19, 2009 through March 31, 2013
Resumo:
Special investigation of the Garner Volunteer Ambulance Service for the period July 1, 2011 through June 30, 2012
Resumo:
Report on a special investigation of the City of Riverside for the period July 1, 2006 through December 31, 2012
Resumo:
Iowa's county road system includes several thousands of miles of paved roads which consist of Portland cement concrete (PCC) surfaces, asphalt cement concrete (ACC) surfaces, and combinations of thin surface treatments such as seal coats and slurries. These pavements are relatively thin pavements when compared to the state road system and therefore are more susceptible to damage from heavy loads for which they were not designed. As the size of the average farm in Iowa has increased, so have the size and weights of implements of husbandry. These implements typically have fewer axles than a truck hauling the same weight would be required to have; in other words, some farm implements have significantly higher axle weights than would be legal for semi-trailers. Since stresses induced in pavements are related to a vehicle's axle weight, concerns have been raised among county and state engineers regarding the possible damage to roadway surfaces that could result from some of these large implements of husbandry. Implements of husbandry on Iowa's highway system have traditionally not been required to comply with posted weight embargo on bridges or with regulations regarding axle-weight limitations on roadways. In 1999, with House File 651, the Iowa General Assembly initiated a phased program of weight restrictions for implements of husbandry. To help county and state engineers and the Iowa legislature understand the effects of implements of husbandry on Iowa's county roads, the following study was conducted. The study investigated the effects of variously configured grain carts, tank wagons, and fence-line feeders on Iowa's roadways, as well as the possible mitigating effects of flotation tires and tracks on the transfer of axle weights to the roadway. The study was accomplished by conducting limited experimental and analytical research under static loading conditions
Resumo:
Removal of ice from roads is of the more challenging task in winter highway maintenance. The best mechanical method is to use a truck with underbody plow blade, but such equipment is not available to all agencies charged with winter maintenance operations. While counties and cities often use motor graders to scrape ice, it would be of great benefit if front mounted plows could be used effectively for ice removal. To reveal and understand the factors that influence the performance of these plows, measurement of the forces experienced by the plow blades during ice scraping is desirable. This study explores the possibility of using accelerometers to determine the forces on a front-mounted plow when scraping ice. The plow was modeled by using a dynamic approach. The forces on the plow were to be determined by the measurement of the accelerations of the plow. Field tests were conducted using an "as is" front-mounted plow instrumented with accelerometers. The results of the field tests indicate that in terms of ice removal, the front-mounted plow is not favorable equipment. The major problem in this study is that the front mounted plow was not able to cut ice, and therefore experienced no significant scraping forces. However, the use of accelerometers seems to be promising for analyzing the vibration problems of the front-mounted plow.
Resumo:
One of the more severe winter hazards is ice or compacted snow on roadways. While three methods are typically used to combat ice (salting, sanding and scraping), relatively little effort has been applied to improve methods of scraping ice from roads. In this project, a new test facility has been developed, comprising a truck with an underbody blade, which has been instrumented such that the forces to scrape ice from a pavement can be measured. A test site has been used, which is not accessible to the public, and ice covers have been sprayed onto the pavement and subsequently scraped from it, while the scraping loads have been recorded. Three different cutting edges have been tested for their ice scraping efficiency. Two of the blades are standard (one with a carbide insert, the other without) while the third blade was designed under the SHRP H-204A project. Results from the tests allowed two parameters to be identified. The first is the scraping efficiency which is the ratio of vertical to horizontal force. The lower this ratio, the more efficiently ice is being removed. The second parameter is the scraping effectiveness, which is related (in some as yet unspecified manner) to the horizontal load. The higher the horizontal load, the more ice is being scraped. The ideal case is thus to have as high a horizontal load as possible, combined with the lowest possible vertical load. Results indicate that the SHRP blade removed ice more effectively than the other two blades under equivalent conditions, and furthermore, did so with greater efficiency and thus more control. Furthermore, blade angles close to 0 deg provide for the most efficient scraping for all three blades. The study has shown that field testing of plow blades is possible in controlled situations, and that blades can be evaluated using this system. The system is available for further tests as are deemed appropriate.
Resumo:
Research project HR-231, "Special Surface Preparation Prior to Bituminous Overlay", was initiated in 1982 to study the effectiveness of three different crack fillers in extending pavement life. In particular, this project was designed to determine if any of the fillers could substantially reduce the rate of subsurface deterioration and general deterioration of an asphalt pavement at crack locations. This project also sought to determine the effects of the various crack filling procedures on different thicknesses of bituminous overlays. The three fillers, a fly ash slurry, an emulsion, and a rubberized asphalt mixture, were used along with a control section with no crack filler material on a 2.5 mile section of Cerro Gordo Trunk Route S-25 south of the town of Thornton. This report discusses the construction and performance of each filler material and makes recommendations concerning future use of any of the materials used.
Resumo:
Report on a special investigation of Grange Township for the period January 1, 2006 through November 15, 2013
Resumo:
Iowa Lottery Retailer Newsletter Special Edition
Resumo:
Iowa Lottery Action Special Edition Retailer Newsletter
Resumo:
Iowa Lottery Retailer Newsletter
Resumo:
Iowa Lottery Retailer Newsletter Special Edition
Resumo:
Iowa Lottery Retailer Newsletter Special Edition
Resumo:
Iowa Lottery Retailer Newsletter Special Edition
Resumo:
Iowa Lottery Retailer Newsletter Special Edition