258 resultados para Crash circumstances
Resumo:
Traffic safety engineers are among the early adopters of Bayesian statistical tools for analyzing crash data. As in many other areas of application, empirical Bayes methods were their first choice, perhaps because they represent an intuitively appealing, yet relatively easy to implement alternative to purely classical approaches. With the enormous progress in numerical methods made in recent years and with the availability of free, easy to use software that permits implementing a fully Bayesian approach, however, there is now ample justification to progress towards fully Bayesian analyses of crash data. The fully Bayesian approach, in particular as implemented via multi-level hierarchical models, has many advantages over the empirical Bayes approach. In a full Bayesian analysis, prior information and all available data are seamlessly integrated into posterior distributions on which practitioners can base their inferences. All uncertainties are thus accounted for in the analyses and there is no need to pre-process data to obtain Safety Performance Functions and other such prior estimates of the effect of covariates on the outcome of interest. In this light, fully Bayesian methods may well be less costly to implement and may result in safety estimates with more realistic standard errors. In this manuscript, we present the full Bayesian approach to analyzing traffic safety data and focus on highlighting the differences between the empirical Bayes and the full Bayes approaches. We use an illustrative example to discuss a step-by-step Bayesian analysis of the data and to show some of the types of inferences that are possible within the full Bayesian framework.
Resumo:
Red light running (RLR) is a problem in the US that has resulted in 165,000 injuries and 907 fatalities annually. In Iowa, RLR-related crashes make up 24.5 percent of all crashes and account for 31.7 percent of fatal and major injury crashes at signalized intersections. RLR crashes are a safety concern due to the increased likelihood of injury compared to other types of crashes. One tool used to combat red light running is automated enforcement in the form of RLR cameras. Automated enforcement, while effective, is often controversial. Cedar Rapids, Iowa installed RLR and speeding cameras at seven intersections across the city. The intersections were chosen based on crash rates and whether cameras could feasibly be placed at the intersection approaches. The cameras were placed starting in February 2010 with the last one becoming operational in December 2010. An analysis of the effect of the cameras on safety at these intersections was determined prudent in helping to justify the installation and effectiveness of the cameras. The objective of this research was to assess the safety effectiveness of the RLR program that has been implemented in Cedar Rapids. This was accomplished by analyzing data to determine changes in the following metrics: Reductions in red light violation rates based on overall changes, time of day changes, and changes by lane Effectiveness of the cameras over time Time in which those running the red light enter the intersection Changes in the average headway between vehicles entering the intersection
Resumo:
Single-vehicle run-off-road crashes are the most common crash type on rural two-lane Iowa roads. Rumble strips have proven effective in mitigating these crashes, but the strips are commonly installed in paved shoulders on higher-volume roads that are owned by the State of Iowa. Lower-volume paved rural roads owned by local agencies do not commonly feature paved shoulders but frequently experience run-off-road crashes. This project involved installing rumble stripes, which are a combination of conventional rumble strips with a painted edge line placed on the surface of the milled area, along the edge of the travel lanes, but at a narrow width to avoid possible intrusion into the normal vehicle travel paths. The research described in this report was part of a project funded by the Federal Highway Administration, Iowa Highway Research Board, and Iowa Department of Transportation to evaluate the effectiveness of edge-line rumble strips in Iowa. The project evaluated the effectiveness of rumble stripes in reducing run-off-road crashes and in improving the longevity and wet-weather visibility of edge-line markings. This project consisted of two phases. The first phase was to select pilot study locations, select a set of test sites, install rumble stripes, summarize lessons learned during installation, and provide a preliminary assessment of the rumble stripes’ performance. The purpose of this report was to document results from Phase II. A before and after crash analysis was conducted to assess whether use of the treatment had resulted in fewer crashes. However, due to low sample size, results of the analysis were inconclusive. Lateral position was also evaluated before and after installation of the treatment to determine whether vehicles engaged in better lane keeping. Pavement marking wear was also assessed.
Resumo:
Underbody plows can be very useful tools in winter maintenance, especially when compacted snow or hard ice must be removed from the roadway. By the application of significant down-force, and the use of an appropriate cutting edge angle, compacted snow and ice can be removed very effectively by such plows, with much greater efficiency than any other tool under those circumstances. However, the successful operation of an underbody plow requires considerable skill. If too little down pressure is applied to the plow, then it will not cut the ice or compacted snow. However, if too much force is applied, then either the cutting edge may gouge the road surface, causing significant damage often to both the road surface and the plow, or the plow may ride up on the cutting edge so that it is no longer controllable by the operator. Spinning of the truck in such situations is easily accomplished. Further, excessive down force will result in rapid wear of the cutting edge. Given this need for a high level of operator skill, the operation of an underbody plow is a candidate for automation. In order to successfully automate the operation of an underbody plow, a control system must be developed that follows a set of rules that represent appropriate operation of such a plow. These rules have been developed, based upon earlier work in which operational underbody plows were instrumented to determine the loading upon them (both vertical and horizontal) and the angle at which the blade was operating.These rules have been successfully coded into two different computer programs, both using the MatLab® software. In the first program, various load and angle inputs are analyzed to determine when, whether, and how they violate the rules of operation. This program is essentially deterministic in nature. In the second program, the Simulink® package in the MatLab® software system was used to implement these rules using fuzzy logic. Fuzzy logic essentially replaces a fixed and constant rule with one that varies in such a way as to improve operational control. The development of the fuzzy logic in this simulation was achieved simply by using appropriate routines in the computer software, rather than being developed directly. The results of the computer testing and simulation indicate that a fully automated, computer controlled underbody plow is indeed possible. The issue of whether the next steps toward full automation should be taken (and by whom) has also been considered, and the possibility of some sort of joint venture between a Department of Transportation and a vendor has been suggested.
Resumo:
The Iowa Department of Transportation (DOT) requested a road safety audit (RSA) of the US 59/IA 9 intersection in northwestern Iowa, just south of the Minnesota border, to assess intersection environmental issues and crash history and recommend appropriate mitigation to address the identified safety issues at the intersection. Although the number of crashes at the location has not been significantly higher than the statewide average for similar intersections, the severity of these crashes has been of concern. This RSA was unique in that it included intersection video observation and recorded traffic conflict data analysis, along with the daylight and nighttime field reviews. This report outlines the findings and recommendations of the RSA team for addressing the safety concerns at this intersection.
Resumo:
We received a complaint in late September 2011 that an Earlham School District employee had borrowed a school vehicle for her personal use for one month, with the Superintendent’s permission. The school board had discussed the circumstances of the borrowed district vehicle in closed session. The complainant believed this was contrary to Iowa law and also believed no action had been taken against the school employee who borrowed the vehicle or the superintendent who allowed the personal use of the vehicle. He was aware the school district’s attorney reviewed the matter and determined the employee and superintendent violated no law or district policies. Since the school board discussed the matter only in closed session, it was unknown what, if any, discipline was taken against the employees and whether such actions were condoned by the district. We agreed to investigate to determine if the actions of school officials or employees violated Iowa law and if the response from the school board was appropriate.
Resumo:
Excessive speed is often cited as a primary driver factor in crashes, particularly rural two-lane crashes. It has also been suggested that speed plays a significant role in crashes on curves. However, the relationship between speed and crashes on curves is not well documented because it is difficult to determine driver speed after the fact when investigating a crash. One method to begin documenting this relationship is to explore the relationship between lateral position and speed as a crash surrogate. For this study, the researchers collected speed and lateral position data for three rural two-lane curves. The relationship between lateral position and speed was assessed by comparing the odds of a near-lane crossing for vehicles traveling 5 or more mph over the advisory speed to those for vehicles traveling below that threshold.
Resumo:
The Federal Highway Administration (FHWA) estimates that 58 percent of roadway fatalities are lane departures, while 40 percent of fatalities are single-vehicle run-off-road (SVROR) crashes. Addressing lane-departure crashes is therefore a priority for national, state, and local roadway agencies. Horizontal curves are of particular interest because they have been correlated with increased crash occurrence. This toolbox was developed to assist agencies address crashes at rural curves. The main objective of this toolbox is to summarize the effectiveness of various known curve countermeasures. While education, enforcement, and policy countermeasures should also be considered, they were not included given the toolbox focuses on roadway-based countermeasures. Furthermore, the toolbox is geared toward rural two-lane curves. The research team identified countermeasures based on their own research, through a survey of the literature, and through discussions with other professionals. Coverage of curve countermeasures in this toolbox is not necessarily comprehensive. For each countermeasure covered, this toolbox includes the following information: description, application, effectiveness, advantages, and disadvantages.
Resumo:
In response to local concerns, the Iowa Department of Transportation (DOT) requested a road safety audit (RSA) for the IA Highway 28 corridor through the City of Norwalk in Warren County, Iowa, from the south corporate limits of Norwalk through the IA 5 interchange in Polk County, Iowa. The audit included meeting with City staff to discuss concerns, review crash history and operational issues, observe the route under daylight and nighttime conditions, and analyze available data. This report outlines the findings and recommendations of the audit team for addressing the safety concerns and operational matters along this corridor.
Resumo:
Incentive/disincentive clauses (I/D) are designed to award payments to contractors if they complete work ahead of schedule and to deduct payments if they exceed the completion time. A previously unanswered question is, “Did the costs of the actual work zone impacts that were avoided justify the incentives paid?” This report answers that question affirmatively based on an evaluation of 20 I/D projects in Missouri from 2008 to 2011. Road user costs (RUC) were used to quantify work zone impacts and included travel delays, vehicle operating costs, and crash costs. These were computed using work zone traffic conditions for partial-closure projects and detour volumes and routes for full-closure projects. Conditions during construction were compared to after construction. Crash costs were computed using Highway Safety Manual methodology. Safety Performance Functions produced annual crash frequencies that were translated into crash cost savings. In considering an average project, the percentage of RUC savings was around 13% of the total contract amount, or $444,389 of $3,464,620. The net RUC savings produced was around $7.2 million after subtracting the approximately $1.7 million paid in incentives. In other words, for every dollar paid in incentives, approximately 5.3 dollars of RUC savings resulted. I/D provisions were very successful in saving RUC for projects with full-closure, projects in urban areas, and emergency projects. Rural, non-emergency projects successfully saved RUC but not at the same level as other projects. The I/D contracts were also compared to all Missouri Department of Transportation contracts for the same time period. The results show that I/D projects had a higher on-time completion percentage and a higher number of bids per call than average projects. But I/D projects resulted in 4.52% higher deviation from programmed costs and possibly more changes made after the award. A survey of state transportation departments and contractors showed that both agreed to the same issues that affect the success of I/D contracts. Legal analysis suggests that liquidated damages is preferred to disincentives, since enforceability of disincentives may be an issue. Overall, in terms of work zone impact mitigation, I/D contracts are very effective at a relatively low cost.
Resumo:
The Institute for Transportation (InTrans) at Iowa State University completed work on an in-depth study of crash history on lowvolume, rural roads in Iowa in December 2010. Results indicated that unpaved roads with traffic volumes greater than 100 vehicles per day (vpd) exhibit significantly higher crash frequencies, rates, and densities than any other class of low-volume road examined, paved or unpaved. The total mileage for this class of roadway in Iowa is only about 4,400 miles, spread over 99 counties in the state, which is certainly a manageable number of miles for individual rural agencies. The purpose of this study was to identify and examine several unpaved, local road segments with higher than average crash frequencies, select and undertake potentially-beneficial mitigation, and evaluate the results as time allowed. A variety of low-cost options were considered, including engineering improvements, enhanced efforts by law enforcement, and educational initiatives. Using input, active support, and participation from local agencies and state and Federal safety advocates, the study afforded a unique opportunity to examine useful tools for local rural agencies to utilize in addressing safety on this particular type of roadway.
Resumo:
The Institute for Transportation (InTrans) at Iowa State University completed work on an in-depth study of crash history on lowvolume, rural roads in Iowa in December 2010. Results indicated that unpaved roads with traffic volumes greater than 100 vehicles per day (vpd) exhibit significantly higher crash frequencies, rates, and densities than any other class of low-volume road examined, paved or unpaved. The total mileage for this class of roadway in Iowa is only about 4,400 miles, spread over 99 counties in the state, which is certainly a manageable number of miles for individual rural agencies. The purpose of this study was to identify and examine several unpaved, local road segments with higher than average crash frequencies, select and undertake potentially-beneficial mitigation, and evaluate the results as time allowed. A variety of low-cost options were considered, including engineering improvements, enhanced efforts by law enforcement, and educational initiatives. Using input, active support, and participation from local agencies and state and Federal safety advocates, the study afforded a unique opportunity to examine useful tools for local rural agencies to utilize in addressing safety on this particular type of roadway.
Resumo:
Improving safety at nighttime work zones is important because of the extra visibility concerns. The deployment of sequential lights is an innovative method for improving driver recognition of lane closures and work zone tapers. Sequential lights are wireless warning lights that flash in a sequence to clearly delineate the taper at work zones. The effectiveness of sequential lights was investigated using controlled field studies. Traffic parameters were collected at the same field site with and without the deployment of sequential lights. Three surrogate performance measures were used to determine the impact of sequential lights on safety. These measures were the speeds of approaching vehicles, the number of late taper merges and the locations where vehicles merged into open lane from the closed lane. In addition, an economic analysis was conducted to monetize the benefits and costs of deploying sequential lights at nighttime work zones. The results of this study indicates that sequential warning lights had a net positive effect in reducing the speeds of approaching vehicles, enhancing driver compliance, and preventing passenger cars, trucks and vehicles at rural work zones from late taper merges. Statistically significant decreases of 2.21 mph mean speed and 1 mph 85% speed resulted with sequential lights. The shift in the cumulative speed distributions to the left (i.e. speed decrease) was also found to be statistically significant using the Mann-Whitney and Kolmogorov-Smirnov tests. But a statistically significant increase of 0.91 mph in the speed standard deviation also resulted with sequential lights. With sequential lights, the percentage of vehicles that merged earlier increased from 53.49% to 65.36%. A benefit-cost ratio of around 5 or 10 resulted from this analysis of Missouri nighttime work zones and historical crash data. The two different benefitcost ratios reflect two different ways of computing labor costs.
Resumo:
Crashworthy, work-zone, portable sign support systems accepted under NCHRP Report No. 350 were analyzed to predict their safety peformance according to the TL-3 MASH evaluation criteria. An analysis was conducted to determine which hardware parameters of sign support systems would likely contribute to the safety performance with MASH. The acuracy of the method was evaluated through full-scale crash testing. Four full-scale crash tests were conducted with a pickup truck. Two tall-mounted, sign support systems with aluminum sign panels failed the MASH criteria due to windshield penetration. One low-mounted system with a vinyl, roll-up sign panel failed the MASH criteria due to windshield and floorboard penetration. Another low-mounted system with an aluminum sign panel successfully met the MASH criteria. Four full-scale crash tests were conducted with a small passenger car. The low-mounted tripod system with an aluminum sign panel failed the MASH criteria due to windshield penetration. One low-mounted system with aluminum sign panel failed the MASH criteria due to excessive windshield deformation, and another similar system passed the MASH criteria. The low-mounted system with a vinyl, roll-up sign panel successfully met the MASH criteria. Hardware parameters of work-zone sign support systems that were determined to be important for failure with MASH include sign panel material, the height to the top of the mast, the presence of flags, sign-locking mechanism, base layout and system orientation. Flowcharts were provided to assist manufacturers when designing new sign support systems.
Resumo:
Highway construction is among the most dangerous industries in the US. Internal traffic control design, along with how construction equipment and vehicles interact with the traveling public, have a significant effect on how safe a highway construction work zone can be. An integrated approach was taken to research work-zone safety issues and mobility, including input from many personnel, ranging from roadway designers to construction laborers and equipment operators. The research team analyzed crash data from Iowa work-zone incident reports and Occupational Safety and Health Administration data for the industry in conjunction with the results of personal interviews, a targeted work-zone ingress and egress survey, and a work-zone pilot project.