231 resultados para Water microbioly
Resumo:
Introduction: As part of the roadside development along the Interstate Highway System, the Iowa State Highway Commission has constructed eight pair of rest area facilities. Furthermore, two pair are presently under construction with an additional two pair proposed for letting in 1967. An additional nine and one-half pairs of rest areas are in the planning phase, a grand total of 45 rest Brea buildings. The facilities existing were planned and designed in a relatively short period of time. The rest area facilities are unusual in terms of water use, water demand rates, and the fact that there are no applicable guidelines from previous installations. Such facilities are a pioneering effort to furnish a service -which the travelling public desires and will use. The acceptance and current use of the existing facilities shows that the rest areas do provide a service the public will use and appreciate. The Iowa State Highway Commission is to be congratulated for this· pioneering effort. However there are problems, as should be expected when design of a new type of facility has no past operating experience to use as a guide. Another factor which enters is that a rest area facility is quite different and rather unrelated to engineering in the highway field of practice. Basically, the problems encountered can be resolved into several areas, namely 1) maintenance problems in equipment due to 2) insufficient capacity of several other elements of the water systems, and 3) no provisions for water quality control. This study and report is supposed to essentially cover the review of the rest areas, either existing and under construction or letting. However, the approach used has been somewhat different. Several basic economically feasible water system schemes have been developed which are· adaptable to the different well capacities and different water qualities encountered. These basic designs are used as a guide in recommending modifications to the existing rest area water systems, anticipating that the basic designs will be used for future facilities. The magnitude of the problems involved is shown by the fact that the projected water use and demand variations of each rest area building is equivalent to the water supply for a community of about 100 people. The problems of proper operation and maintenance of an eventual thirty to forty-five such facilities are gigantic. For successful operation the rest area water systems must have a high degree of standardization and interchangeability of all elements of the water systems, even if it means a limited degree of over-design in some rest area facilities.
Resumo:
A snapshot of water resource trends prepared by the Iowa DNR in collaboration with the Iowa Department of Agriculture and Land Stewardship, the U.S. Geological Survey, and The Iowa Homeland Security and Emergency Management Department.
Resumo:
A snapshot of water resource trends prepared by the Iowa DNR in collaboration with the Iowa Department of Agriculture and Land Stewardship, the U.S. Geological Survey, and The Iowa Homeland Security and Emergency Management Department.
Resumo:
A snapshot of water resource trends prepared by the Iowa DNR in collaboration with the Iowa Department of Agriculture and Land Stewardship, the U.S. Geological Survey, and The Iowa Homeland Security and Emergency Management Department.
Resumo:
Traditionally, the Iowa Department of Transportation has used the Iowa Runoff Chart and single-variable regional-regression equations (RREs) from a U.S. Geological Survey report (published in 1987) as the primary methods to estimate annual exceedance-probability discharge (AEPD) for small (20 square miles or less) drainage basins in Iowa. With the publication of new multi- and single-variable RREs by the U.S. Geological Survey (published in 2013), the Iowa Department of Transportation needs to determine which methods of AEPD estimation provide the best accuracy and the least bias for small drainage basins in Iowa. Twenty five streamgages with drainage areas less than 2 square miles (mi2) and 55 streamgages with drainage areas between 2 and 20 mi2 were selected for the comparisons that used two evaluation metrics. Estimates of AEPDs calculated for the streamgages using the expected moments algorithm/multiple Grubbs-Beck test analysis method were compared to estimates of AEPDs calculated from the 2013 multivariable RREs; the 2013 single-variable RREs; the 1987 single-variable RREs; the TR-55 rainfall-runoff model; and the Iowa Runoff Chart. For the 25 streamgages with drainage areas less than 2 mi2, results of the comparisons seem to indicate the best overall accuracy and the least bias may be achieved by using the TR-55 method for flood regions 1 and 3 (published in 2013) and by using the 1987 single-variable RREs for flood region 2 (published in 2013). For drainage basins with areas between 2 and 20 mi2, results of the comparisons seem to indicate the best overall accuracy and the least bias may be achieved by using the 1987 single-variable RREs for the Southern Iowa Drift Plain landform region and for flood region 3 (published in 2013), by using the 2013 multivariable RREs for the Iowan Surface landform region, and by using the 2013 or 1987 single-variable RREs for flood region 2 (published in 2013). For all other landform or flood regions in Iowa, use of the 2013 single-variable RREs may provide the best overall accuracy and the least bias. An examination was conducted to understand why the 1987 single-variable RREs seem to provide better accuracy and less bias than either of the 2013 multi- or single-variable RREs. A comparison of 1-percent annual exceedance-probability regression lines for hydrologic regions 1–4 from the 1987 single-variable RREs and for flood regions 1–3 from the 2013 single-variable RREs indicates that the 1987 single-variable regional-regression lines generally have steeper slopes and lower discharges when compared to 2013 single-variable regional-regression lines for corresponding areas of Iowa. The combination of the definition of hydrologic regions, the lower discharges, and the steeper slopes of regression lines associated with the 1987 single-variable RREs seem to provide better accuracy and less bias when compared to the 2013 multi- or single-variable RREs; better accuracy and less bias was determined particularly for drainage areas less than 2 mi2, and also for some drainage areas between 2 and 20 mi2. The 2013 multi- and single-variable RREs are considered to provide better accuracy and less bias for larger drainage areas. Results of this study indicate that additional research is needed to address the curvilinear relation between drainage area and AEPDs for areas of Iowa.
Resumo:
Audit report on the Iowa Water Pollution Control Works Financing Program (Clean Water Program) and the Iowa Drinking Water Facilities Financing Program (Drinking Water Program), joint programs of the Iowa Finance Authority and the Iowa Department of Natural Resources, for the year ended June 30, 2005
Resumo:
Audit report on the Iowa Water Pollution Control Works Financing Program (Clean Water Program) and the Iowa Drinking Water Facilities Financing Program (Drinking Water Program), joint programs of the Iowa Finance Authority and the Iowa Department of Natural Resources, for the year ended June 30, 2004
Resumo:
A snapshot of water resource trends prepared by the Iowa DNR in collaboration with the Iowa Department of Agriculture and Land Stewardship, the U.S. Geological Survey, and The Iowa Homeland Security and Emergency Management Department.
Resumo:
In Iowa, the Department of Natural Resources (DNR)is responsible for regulating water allocation and use through the issuance of water use permits, but improvements are necessary in this process to assure sustainable supplies into the future. In recent years, there have not been resources dedicated at the state level to properly track and assess water quantity issues. Resources for water use and water quantity monitoring (groundwater level and surface gauges) have continued to decline and have resulted in data becoming outdated and in a format that is difficult to analyze in order to make good decisions.
Resumo:
This document looks at some of Iowa’s more comprehensive, statewide water planning efforts that addressed all aspects of water or a major water issue such as water quality.
Resumo:
Since 1978 when the Water Plan ’78 was published, there have been no truly comprehensive water planning efforts initiated. The ’85 Water Plan and the ’87 Groundwater Protection Strategy were significant efforts that resulted in real advancements in water resource protection but were not truly comprehensive in nature. Other efforts, such as the Section 208 (CWA) plans, the 2000 Nonpoint Source Management Plan, and various conservation and recreation planning efforts that involve various aspects of water have been completed but, like the ’85 Water Plan, were not comprehensive in nature.
Resumo:
Iowa is blessed with generally clean air, fertile soil, and abundant water resources. All are linked and each is vital to both our state’s economic vitality and our citizens' quality of life. Recent interest in water monitoring by citizens, the governor, and the state legislature has significantly increased financial resources directed at monitoring within the state. It also represents an opportunity to review our monitoring program and take a fresh look at why we monitor, what we monitor and how we monitor. A review of historical monitoring efforts for the state is provided in this plan.
Resumo:
Water planning efforts typically identify problems and needs. But simply calling attention to issues is usually not enough to spur action; the end result of many well-intentioned planning efforts is a report that ends up gathering dust on a shelf. Vague recommendations like “Water conservation measures should be implemented” usually accomplish little by themselves as they don’t assign responsibility to anyone. Success is more likely when an implementation strategy — who can and should do what — is developed as part of the planning process. The more detailed and specific the implementation strategy, the greater the chance that something will actually be done.
Resumo:
There are a few basic fundamentals you need before starting a source water protection project. These include information on your community’s wells (or intakes), aquifer, source water area, and potential contaminants. All of these essential items should be included in your community’s source water information, you may find this information in the workbook and guidebook.
Resumo:
There are a few basic fundamentals you need before starting a source water protection project. These include information on your community’s wells (or intakes), aquifer, source water area, and potential contaminants. All of these essential items should be included in your community’s source water information, you may find this information in the workbook and guidebook.