203 resultados para Highway transport workers
Resumo:
Please see TR-477 Phase 2 Final Report -- http://publications.iowa.gov/id/eprint/20041
Resumo:
The goal of this research project was to develop a method to measure the performance of a winter maintenance program with respect to the task of providing safety and mobility to the travelling public. Developing these measures required a number of steps, each of which was accomplished. First, the impact of winter weather on safety (crash rates) and mobility (average vehicle speeds were measured by a combination of literature reviews and analysis of Iowa Department of Transportation traffic and Road Weather Information System data. Second, because not all winter storms are the same in their effects on safety and mobility, a method had to be developed to determine how much the various factors that describe a winter storm actually change safety and mobility. As part of this effort a storm severity index was developed, which ranks each winter storm on a scale between 0 (a very benign storm) and 1 (the worst imaginable storm). Additionally a number of methods of modeling the relationships between weather, winter maintenance actions and road surface conditions were developed and tested. The end result of this study was a performance measure based on average vehicle speed. For a given class of road, a maximum expected average speed reduction has been identified. For a given storm, this maximum expected average speed reduction is modified by the storm severity index to give a target average speed reduction. Thus, if for a given road the maximum expected average speed reduction is 20 mph, and the storm severity for a particular storm is 0.6, then the target average speed reduction for that road in that storm is 0.6 x 20 mph or 12 mph. If the average speed on that road during and after the storm is only 12 mph or less than the average speed on that road in good weather conditions, then the winter maintenance performance goal has been met.
Resumo:
The main objective of the proposed study is to use Computational Fluid Dynamics (CFD) tools to determine the wind loads by accurate numerical simulations of air flow characteristics around large highway sign structures under severe wind speeds conditions. Fully three-dimensional Reynolds- Averaged Navier-Stokes (RANS) simulations are used to estimate the total force on different panels, as well as the actual pressure distribution on the front and back faces of the panels. In particular, the present study investigates the effects of aspect ratio and sign spacing for regular panels, the effect of sign depth for the dynamic message signs that are now being used on Iowa highways, the effect induced by the presence of back-to-back signs, the effect of the presence of add-on exit signs, and the effect of the presence of trucks underneath the signs potentially creating “wind tunnel” effect.
Resumo:
The focus of highway runoff monitoring programs is on the identification of highway contributions to nonpoint source degradation of surface and groundwater quality. The results of such studies will assist the Iowa Department of Transportation (DOT) in the development of maintenance practices that will minimize the impact of highway transportation networks on water quality while at the same time maintaining public safety. Highway runoff monitoring research will be useful in developing a basis to address issues in environmental impact statements for future highway network expansions. Further, it will lead to optimization of cost effectiveness/environmental factors related to de-icing, weed and dust control, highway drainage, construction methods, etc. In this report, the authors present the data accumulated to date with a preliminary interpretation of the significance of the data. The report will discuss the site setup, operational aspects of data collection, and problems encountered. In addition, recommendations are included to optimize information gained from the study.
Resumo:
During 1959, research was continued by the Agronomy Department in cooperation with the Iowa Highway Commission on vegetative establishment and erosion control on highway backslopes (Project 1010). The work was continued at previously established sites and also several new experiments were initiated during the year. The work will be discussed for each separate experiment and location in this report.
Resumo:
Man’s never-ending search for better materials and construction methods and for techniques of analysis and design has overcome most of the early difficulties of bridge building. Scour of the stream bed, however, has remained a major cause of bridge failures ever since man learned to place piers and abutments in the stream in order to cross wide rivers. Considering the overall complexity of field conditions, it is not surprising that no generally accepted principles (not even rules of thumb) for the prediction of scour around bridge piers and abutments have evolved from field experience alone. The flow of individual streams exhibits a manifold variation, and great disparity exists among different rivers. The alignment, cross section, discharge, and slope of a stream must all be correlated with the scour phenomenon, and this in turn must be correlated with the characteristics of the bed material ranging from clays and fine silts to gravels and boulders. Finally, the effect of the shape of the obstruction itself-the pier or abutment-must be assessed. Since several of these factors are likely to vary with time to some degree, and since the scour phenomenon as well is inherently unsteady, sorting out the influence of each of the various factors is virtually impossible from field evidence alone. The experimental approach was chosen as the investigative method for this study, but with due recognition of the importance of field measurements and with the realization that the results must be interpreted so as to be compatible with the present-day theories of fluid mechanics and sediment transportation. This approach was chosen because, on the one hand, the factors affecting the scour phenomenon can be controlled in the laboratory to an extent that is not possible in the field, and, on the other hand, the model technique can be used to circumvent the present inadequate understanding of the phenomenon of the movement of sediment by flowing water. In order to obtain optimum results from the laboratory study, the program was arranged at the outset to include a related set of variables in each of several phases into which the whole problem was divided. The phases thus selected were : 1. Geometry of piers and abutments, 2. Hydraulics of the stream, 3. Characteristics of the sediment, 4. Geometry of channel shape and alignment.
Resumo:
In the preparation of this compilation of drainage laws of Iowa, an attempt has been made to include those sections of the Code to which reference is frequently required by the State Highway Commission, Boards of Supervisors and County Engineers in the conduct of highway and road administration as it is affected by the Iowa drainage laws. Of necessity some Code provisions which have a bearing on the principal subject were omitted. Enactments of the 56th General Assembly which modify existing code sections have been included as part of the regular text of the Code sections included in this publication. THE USER IS CAUTIONED THAT THESE CODE SECTIONS, AS MODIFIED BY THE 56th GENERAL ASSEMBLY, ARE NOT A PART OF THE 1954 CODE OF IOWA AND ARE OFFICIAL ONLY INSOFAR AS THEY ARE PRINTED IN THE OFFICIAL PUBLICATION ACTS OF THE 56TH GENERAL ASSEMBLY. SINCE THE 57TH GENERAL ASSEMBLY IS IN SESSION DURING THE PRINTING OF THIS PUBLICATION, ENACTMENTS OF THAT BODY WHICH AMEND OR REPEAL SECTIONS SET OUT HEREIN ARE INCLUDED IN THE BACK OF THIS VOLUME ON THE PINK-COLORED PAPER. THE USER IS CAUTIONED IN USING THIS VOLUME TO REFER TO THE TABLE OF SECTIONS REPEALED OR AMENDED, ON THE PINK-COLORED PAPER AT THE BACK OF THIS VOLUME. This publication is offered with the hope and belief that it will prove to be of value and assistance to those concerned with the problems of administering a highway, road and drainage system.
Resumo:
This report concerns a proposed Parkway and Scenic Highway along both sides of the Missouri River in Harrison, Pottawattamie and Mills County in Iowa and Washington, Douglas and Sarpy Counties in Nebraska. This Parkway will make the Missouri River valley accessible to the public, link existing and planned attractions and facilitate planned development while at the same time preserving for posterity the best of the natural attributes of the area.
Resumo:
3D engineered modeling is a relatively new and developing technology that can provide numerous benefits to owners, engineers, contractors, and the general public. This manual is for highway agencies that are considering or are in the process of switching from 2D plan sets to 3D engineered models in their highway construction projects. It will discuss some of the benefits, applications, limitations, and implementation considerations for 3D engineered models used for survey, design, and construction. Note that is not intended to cover all eventualities in all states regarding the deployment of 3D engineered models for highway construction. Rather, it describes how one state—Iowa—uses 3D engineered models for construction of highway projects, from planning and surveying through design and construction.
Resumo:
The Iowa economy is undergoing great change. Among the sectors deemed important to Iowa’s economic future is bioscience. Definition of what constitutes the bioscience sector but suggests it includes agricultural, medical, plant-life sciences, and related industrial activity.
Resumo:
US Geological Survey (USGS) based elevation data are the most commonly used data source for highway hydraulic analysis; however, due to the vertical accuracy of USGS-based elevation data, USGS data may be too “coarse” to adequately describe surface profiles of watershed areas or drainage patterns. Additionally hydraulic design requires delineation of much smaller drainage areas (watersheds) than other hydrologic applications, such as environmental, ecological, and water resource management. This research study investigated whether higher resolution LIDAR based surface models would provide better delineation of watersheds and drainage patterns as compared to surface models created from standard USGS-based elevation data. Differences in runoff values were the metric used to compare the data sets. The two data sets were compared for a pilot study area along the Iowa 1 corridor between Iowa City and Mount Vernon. Given the limited breadth of the analysis corridor, areas of particular emphasis were the location of drainage area boundaries and flow patterns parallel to and intersecting the road cross section. Traditional highway hydrology does not appear to be significantly impacted, or benefited, by the increased terrain detail that LIDAR provided for the study area. In fact, hydrologic outputs, such as streams and watersheds, may be too sensitive to the increased horizontal resolution and/or errors in the data set. However, a true comparison of LIDAR and USGS-based data sets of equal size and encompassing entire drainage areas could not be performed in this study. Differences may also result in areas with much steeper slopes or significant changes in terrain. LIDAR may provide possibly valuable detail in areas of modified terrain, such as roads. Better representations of channel and terrain detail in the vicinity of the roadway may be useful in modeling problem drainage areas and evaluating structural surety during and after significant storm events. Furthermore, LIDAR may be used to verify the intended/expected drainage patterns at newly constructed highways. LIDAR will likely provide the greatest benefit for highway projects in flood plains and areas with relatively flat terrain where slight changes in terrain may have a significant impact on drainage patterns.
Resumo:
The main objective of this study was to utilize light detection and ranging (LIDAR) technology to obtain highway safety-related information. The safety needs of older drivers in terms of prolonged reaction times were taken into consideration. The tasks undertaken in this study were (1) identification of crashes that older drivers are more likely to be involved in, (2) identification of highway geometric features that are important in such crashes, (3) utilization of LIDAR data for obtaining information on the identified highway geometric features, and (4) assessment of the feasibility of using LIDAR data for such applications. A review of previous research indicated that older drivers have difficulty negotiating intersections, and it was recognized that intersection sight triangles were critical to safe intersection negotiation. LIDAR data were utilized to obtain information on potential sight distance obstructions at six selected intersections located on the Iowa Highway 1 corridor by conducting in-office line-of-sight analysis. Crash frequency, older driver involvement, and data availability were considerations in the selection of the six intersections. Results of the in-office analysis were then validated by visiting the intersections in the field. Sixty-six potential sight distance obstructions were identified by the line-of-sight analysis, out of which 62 (89.8%) were confirmed while four (5.8%) were not confirmed by the video. At least three (4.4%) potential sight distance obstructions were discovered in the video that were not detected by the line-of-sight analysis. The intersection with the highest crash frequency involving older drivers was correctly found to have obstructions located within the intersection sight triangles. Based on research results, it is concluded that LIDAR data can be utilized for identifying potential sight distance obstructions at intersections. The safety of older drivers can be enhanced by locating and rectifying intersections with obstructions in sight triangles.
Resumo:
Hispanics are a large and growing part of the United States workforce. Projections of the U.S. Census Bureau (2001) state that, by the year 2050, Hispanics will account for 25% of the population. For the Midwest in particular, the Hispanic population is expected to increase 35% by the year 2025. The construction industry is expected to experience a greater percentage increase of its Hispanic population, due to the labor-intensive nature of the industry. This study addresses the expected increase of Hispanic workers in the construction industry by testing the best approaches for delivering training to construction crews with Hispanic workers as well as American supervisors and laborers in the state of Iowa. The research methodology consisted of assessing the effects on communication, safety, work environment, and productivity as a result of the integration training. Results show that integration on-site training decreases workers’ desire to move and increases quality of work and productivity. Most importantly, experimental design was used to show the increasing levels of direct construction communication due to the Toolbox Integration Course for Hispanic Workers and American Supervisors (TICHA) designed as part of this project. This study recommends the creation of a quasi-governmental or association program that can offer continuous research and training that can benefit the construction industry as well as society as a whole. The industry involvement in this process is crucial for contractors. Not only do contractors benefit from reduced insurance premiums when workers act safely, but workers with better communication skills are more productive.
Resumo:
In the construction industry, Hispanics have the highest rate of fatal work injuries among the racial/ethnic groups, and productivity in the field is limited by the language barrier between Hispanic workers and their supervisors and the level of education of many Hispanic craft workers. This research developed a training program designed to facilitate the integration process between American supervisors and Hispanic craft workers in a practical and cost-effective way, thus improving productivity and lowering fatality rates. The Iowa State University research team conducted a survey of 38 American supervisors, representing 14 Iowa construction companies. Survey results confirm that communication is the main problem experienced by American supervisors in the job site. Many American supervisors also use or depend on a link-person (an individual who interprets tasks to the rest of the Hispanic crew) to communicate to the Hispanic crew members. Research findings show that language differences affect productivity and workplace safety in the construction industry. Additionally, the educational levels of Hispanic workers indicate that they may not have the literacy skills necessary to understand training materials. This research developed two training courses designed to expand the Spanish communication skills of American supervisors. The research team modified the English-as-a-second-language course developed in Phase I into the Spanish as a Second Language (SSL) Survival Course. A series of technical training courses were also developed, titled Concrete Pavement Construction Basics (CPCB), that cover general practices in concrete pavement construction. They are much shorter and more specialized than the SSL course. The CPCB courses provide American supervisors simple and practical communication tools on a variety of topics to choose from according to their specific needs.
Resumo:
The Federal Highway Administration published the final rule updating 23 CFR 630 Subpart J in September 2004. The revised rule requires agencies using federal funding to address both safety and mobility in planning and construction of roadway improvements. The Iowa Department of Transportation (Iowa DOT) requested the assistance of the Center for Transportation and Research in developing guidance for a policy and procedures to comply with the final rule. This report describes an in-depth examination of current Iowa DOT project development processes for all types of improvements, including maintenance, as well as a detailed characterization of work zone impact considerations throughout project completion. To comply with both the letter and perceived intent of the final rule on safety and mobility, the report features a suggested work zone policy statement and suggested revisions in the Iowa DOT project development processes, including a definition of the key element: significant projects.