163 resultados para maintenance cost
Resumo:
Many state, county, and local agencies are faced with deteriorating bridge infrastructure composed of a large percentage of relatively short to medium span bridges. In many cases, these older structures are rolled or welded longitudinal steel stringers acting compositely with a reinforced concrete deck. Most of these bridges, although still in service, need some level of strengthening due to increases in legal live loads or loss of capacity due to deterioration. Although these bridges are overstressed in most instances, they do not warrant replacement; thus, structurally efficient but cost-effective means of strengthening needs to be employed. In the past, the use of bolted steel cover plates or angles was a common retrofit option for strengthening such bridges. However, the time and labor involved to attach such a strengthening system can sometimes be prohibitive. This project was funded through the Federal Highway Administration’s Innovative Bridge Research and Construction program. The goal is to retrofit an existing structurally deficient, three-span continuous steel stringer bridge using an innovative technique that involves the application of post-tensioning forces; the post-tensioning forces were applied using fiber reinforced polymer post-tensioning bars. When compared to other strengthening methods, the use of carbon fiber reinforced polymer composite materials is very appealing in that they are highly resistant to corrosion, have a low weight, and have a high tensile strength. Before the post-tensioning system was installed, a diagnostic load test was conducted on the subject bridge to establish a baseline behavior of the unstrengthened bridge. During the process of installing the post-tensioning hardware and stressing the system, both the bridge and the post-tensioning system were monitored. The installation of the hardware was followed by a follow-up diagnostic load test to assess the effectiveness of the post-tensioning strengthening system. Additional load tests were performed over a period of two years to identify any changes in the strengthening system with time. Laboratory testing of several typical carbon fiber reinforced polymer bar specimens was also conducted to more thoroughly understand their behavior. This report documents the design, installation, and field testing of the strengthening system and bridge.
Resumo:
The objective of this project was to evaluate low-cost measures to reduce speeds on high-crash horizontal curves. The researchers evaluated two low-cost treatments in Iowa to determine their effectiveness in reducing speeds on rural two-lane roadways. This report summarizes how the research team selected sites and collected data, and the results. The team selected six sites. Retroreflective post treatments were added to existing chevrons at four sites and on-pavement curve markings were added at two sites. The researchers collected speed data before and after installation of the two treatments. The study compared several speed metrics to assess the effectiveness of the treatments. Overall, both were moderately effective in reducing speeds. The most significant impact of the treatments was in reducing the percentage of vehicles traveling over the posted or advisory speed by 5, 10, 15, or 20 or more mph. This result suggests that the treatments are most effective in reducing high-end speeds.
Resumo:
Report on a Review of the Iowa Homeland Security and Emergency Management Department, E911 Cost Data for the period July 1, 2012 through June 30, 2014
Resumo:
This report contains an estimate of the cost of highway resurfacing necessitated by damage from studded tires. The total is $95,620,000 for the twenty-five years from 1971 to 1996. This total includes $51,937,000 to resurface pavements and bridges on Interstate routes and $43,683,000 for other Primary highways. The estimate for Interstate routes includes those sections now open to traffic and those planned for completion by November 1974. The estimate for other Primary routes includes rural and municipal sections open to traffic as of November 1970. The estimate was prepared by computing the cost of expected pavement and bridge resurfacing costs for the twenty-five year period assuming continued use of studded tires, then subtracting from this the expected resurfacing ) cost for the same period assuming that the use of' studded tires is prohibited. The total figure, $95,620,000, should be regarded as a conservative estimate of the cost which may be avoided by prohibiting the use of studded tires in Iowa. The conservative nature of the estimate may be demonstrated by the following examples of the guidelines used iri its preparation. 1. Only mainline pavements were included in the cost estimate for the Interstate routes. The connecting loops, exit ramps and entrance ramps at Interstate interchanges contain many additional miles of pavement subject to wear by studded tires. This pavement was omitted from the estimate because reliable ' information about the rate of pavement wear at such locations is not available. As a result, the Interstate resurfacing costs are underestimated. 2. Several other costs were also omitted from the estimate because of a lack of sufficient information. These include the cost of repairing damage caused by studded tires to city streets other than those designated as Primary routes, the damage to pavements and bridges on the more-heavily travelled Secondary roads, and the damage to pavement traffic markings on all highway systems. Experience indicates that portland cement concrete pavements in Iowa have a normal service life of twenty-five years before resurfacing becomes necessary. The service life for asphalt pavements is thirteen years. In making this cost estimate, the need for resurfacing was attributed to wear from studded tires only when the normal service life of the pavement was shortened by that wear. Consequently, this cost estimate does not account for the reduced safety and convenience to Iowa motorists during the time when pavement wear caused by studded tires is significant but less than the critical amount.
Resumo:
Fly ash, a by-product of coal-fired electricity generating plants, has for years been promoted as a material suitable for highway construction. Disposal of the large quantities of fly ash produced is expensive and creates environmental concerns. The pozzolanic properties make it promotable as a partial Portland cement replacement in pc concrete, a stabilizer for soil and aggregate in embankments and road bases, and a filler material in grout. Stabilizing soils and aggregates for road construction has the potential of using large quantities of fly ash. Iowa Highway Research Board Project HR-194, "Mission-Oriented Dust Control and Surface Improvement Processes for Unpaved Roads", included short test sections of cement, fly ash, and salvaged granular road material mixed for a base in western Iowa. The research showed that cement fly ash aggregate (CFA) has promise as a stabilizing agent in Iowa. There are several sources of sand that when mixed with fly ash may attain strengths much greater than fly ash mixed with salvaged granular road material at little additional cost
Resumo:
Portland cement concrete (PCC) pavement undergoes repeated environmental load-related deflection resulting from temperature and moisture variations across pavement depth. This has been recognized as resulting in PCC pavement curling and warping since the mid-1920s. Slab curvature can be further magnified under repeated traffic loads and may ultimately lead to fatigue failures, including top-down and bottom-up transverse, longitudinal, and corner cracking. It is therefore significant to measure the “true” degree of curling and warping in PCC pavements, not only for quality control (QC) and quality assurance (QA) purposes, but also for better understanding of its relationship to long-term pavement performance. Although several approaches and devices—including linear variable differential transducers (LVDTs), digital indicators, and some profilers—have been proposed for measuring curling and warping, their application in the field is subject to cost, inconvenience, and complexity of operation. This research therefore explores developing an economical and simple device for measuring curling and warping in concrete pavements with accuracy comparable to or better than existing methodologies. Technical requirements were identified to establish assessment criteria for development, and field tests were conducted to modify the device to further enhancement. The finalized device is about 12 inches in height and 18 pounds in weight, and its manufacturing cost is just $320. Detailed development procedures and evaluation results for the new curling and warping measuring device are presented and discussed, with a focus on achieving reliable curling and warping measurements in a cost effective manner.
Resumo:
Currently there are no guidelines within the Manual on Uniform Traffic Control Devices (MUTCD) on construction phasing and maintenance of traffic (MOT) for retrofit construction and maintenance projects involving innovative geometric designs. The research presented in this report addressed this gap in existing knowledge by investigating the state of the practice of construction phasing and MOT for several types of innovative geometric designs including the roundabout, single point urban interchange (SPUI), diverging diamond interchange (DDI), restricted-crossing left turn (RCUT), median U-turn (MUT), and displaced left turn (DLT). This report provides guidelines for transportation practitioners in developing construction phasing and MOT plans for innovative geometric designs. This report includes MOT Phasing Diagrams to assist in the development of MOT strategies for innovative designs. The MOT Phasing Diagrams were developed through a review of literature, survey, interviews with practitioners, and review of plans from innovative geometric design projects. These diagrams are provided as a tool to assist in improving work zone safety and mobility through construction of projects with innovative geometric designs. The aforementioned synthesis of existing knowledge documented existing practices for these types of designs.
Resumo:
The state Departments of Transportation (DOTs) of Iowa, Michigan, and Minnesota formed a consortium to define and develop the next generation highway maintenance vehicle. The Center for Transportation Research and Education of Iowa State University provided staff support to the concept highway maintenance vehicle project, which focused on winter maintenance activities. Phase I of the three-phase project focused on describing the desirable functions of a concept maintenance vehicle. Phase II will include the development, operation, and evaluation of prototype winter maintenance vehicles. Phase III is envisioned to be a comprehensive fleet evaluation of prototype winter maintenance vehicles. This report covers the activities of Phase I. Phase I included conducting a literature review of materials related to winter highway maintenance activities, identifying ideal capabilities of a winter maintenance vehicle, inviting private sector equipment and technology providers to join the project and commit equipment and expertise for Phase II, and determining the specific equipment and technology to be included on the three prototype vehicles for the winter of 1996-1997. Phase I concluded by establishing that assembling the three prototype vehicles would be beneficial to the project and to the three state DOTs.
Resumo:
This booklet is a compilation of notes taken during motor grader operators workshops held at some 20 different locations throughout Iowa during the last two years. It is also the advice of 16 experienced motor grader operators and maintenance foremen (from 14 different counties around Iowa), who serve as instructors and assistant instructors at the "MoGo" workshops. The instructors have all said that they learn as much from the operators who attend the workshops as they impart. Motor grader operators from throughout Iowa have shown us new, innovative and better ways of maintaining gravel roads. This booklet is an attempt to pass on some of these "tips" that we have gathered from Iowa operators. It will need to be revised, corrected, and added to based on the advice we get from you, the operators who do the work here in Iowa.
Resumo:
What follows are the refined guidelines from the Thin Maintenance Surface: Phase II Report. For that report, test sections were created and monitored along with some existing test sections. From the monitoring and evaluation of these test sections, literature reviews, and the experience and knowledge of the authors, the following guidelines were created. More information about thin maintenance surfaces and their uses can be found in the above-mentioned report.
Resumo:
This research project was initiated in 1988 to study the effectiveness of four different construction techniques for establishing a stable base on a granular surfaced roadway. After base stabilization, the roadway was then seal coated, eliminating dust problems associated with granular surfaced roads. When monies become available, the roadway can be surfaced with a more permanent structure. A 2.8 mile section of the Horseshoe Road in Dubuque County was divided into four divisions for the study. This report discusses the procedures used during construction of these different divisions. Problems and possible solutions have been analyzed to better understand the capabilities of the materials and construction techniques used on the project.
Resumo:
In 1982 the Iowa DOT allowed a successful bidder the option of submitting materials and proportions using fly ash to produce a portland cement concrete (PCC) paving mixture to meet a specified compressive strength. The contractor, Irving F. Jensen, received approval for the use of a concrete mixture utilizing 500 lbs. of portland cement and 88 lbs. of fly ash as a replacement of 88 lbs. of portland cement. The PCC mixture was utilized on the Muscatine County US 61 relocation bypass paved as project F-61-4(32)--20-70. A Class "C" fly ash obtained from the Chillicothe electric generating plant approximately 100 miles away was used in the project. This use of fly ash in lieu of portland cement resulted in a cost savings of $64,500 and an energy savings of approximately 16 billion BTU. The compressive strength of this PCC mixture option was very comparable to concrete mixtures produced without the use of fly ash. The pavement has been performing very well. The substitution of fly ash for 15% of the cement has been allowed as a contractor's option since 1984. Due to the cost savings, it has been used in almost all Iowa PCC paving since that time.
Resumo:
The objective of this research project was to evaluate the construction and service performance of ammonium phosphate/fly ash (APFA) treated base courses of crushed fines and/or unprocessed sand. Specific test results related to construction of the test sections were included in the 1987 construction report by Iowa State University. The performance of the experimental sections is dealt with in this final report. This 1986 project demonstrated that in all cases the control sections utilizing a Type B base experienced dramatically less cracking in the surface than the APFA treated base sections. The cost per mix and subsequent surface maintenance costs for the APFA base sections, especially those having a substantial amount of limestone, were higher than the Type B base control sections. This type of construction may prove to be economical only when petroleum product costs escalate.