243 resultados para Asphalt Permeability
Resumo:
Most pavement contraction joint seals in Iowa, in general, have been performing in less than a satisfactory manner. The effective life of the seals, in maintaining a watertight joint, has been only from two to five years. In search of improvements, research was proposed to evaluate preformed neoprene joint seals. The performance of those seals was to be compared mainly with the hot poured rubberized asphalt sealants and cold applied silicone sealants or other sealants commonly used at the time this research began. Joint designs and methods of sawing were also investigated. All evaluations were done in new portland cement concrete (PCC) pavements. Three projects were initially selected and each included a research section of joint sealing. Some additional sites were later added for evaluation. Several joint sealants were evaluated at each research site. The various sites included high, medium and low levels of traffic. Evaluations were done over a five-year period. Neoprene joint seals provided better performance than hot or cold field formed joints.
Resumo:
In recent years there has been renewed interest in using preventive maintenance techniques to extend pavement life and to ensure low life cycle costs for our road infrastructure network. Thin maintenance surfaces can be an important part of a preventive maintenance program for asphalt cement concrete roads. The Iowa Highway Research Board has sponsored Phase Two of this research project to demonstrate the use of thin maintenance surfaces in Iowa and to develop guidelines for thin maintenance surface uses that are specific to Iowa. This report documents the results of test section construction and monitoring started in Phase One and continued in Phase Two. The report provides a recommended seal coat design process based on the McLeod method and guidance on seal coat aggregates and binders. An update on the use of local aggregates for micro-surfacing in Iowa is included. Winter maintenance guidelines for thin maintenance surfaces are reported herein. Finally, Phase One's interim, qualitative thin maintenance surface guidelines are supplemented with Phase two's revised, quantitative guidelines. When thin maintenance surfaces are properly selected and applied, they can improve the pavement surface condition index and the skid resistance of pavements. For success to occur, several requirements must be met, including proper material selection, design, application rate, workmanship, and material compatibility, as well as favorable weather during application and curing. Specific guidance and recommendations for many types of thin maintenance surfaces and conditions are included in the report.
Resumo:
Extensive programmed laboratory tests involving some 400 asphalt emulsion slurry seals (AESS) were conducted. Thirteen aggregates including nine Iowa sources, a quartzite, a synthetic aggregate (Haydite), a limestone stone from Nebraska, and a Chat aggregate from Kansas were tested in combination with four emulsions and two mineral fillers, resulting in a total of 40 material combinations. A number of meetings were held with the Iowa DOT engineers and 12 state highway departments that have had successful slurry seal experiences and records, and several slurry seal contractors and material and equipment suppliers were contacted. Asphalt emulsion slurry seal development, uses, characteristics, tests, and design methods were thoroughly reviewed in conjunction with Iowa's experiences through these meetings and discussions and through a literature search (covering some 140 articles and 12 state highway department specifications). It was found that, while asphalt emulsion slurry seals (when properly designed and constructed) can economically improve the quality and extend the life of existing pavement surface, experiences with them had been mixed due to the many material, slurry, and construction variables that affect their design, construction, and performance. The report discusses those variables identified during the course of the project and makes recommendations concerning design procedures, design criteria, specifications and the means of evaluating them.
Resumo:
This research was initiated to identify methods of reducing the occurrence of transverse cracking. Eight (four repetitive) research sections were established to study three variations in the asphalt concrete pavement. The first variation was the comparison of low- and high-temperature-susceptible asphalt cement (AC) from two different sources. The second variable was to saw and seal transverse joints at spacings varying from 40 to 100 ft. The third variable was to increase the AC content in the asphalt treated base by 1 percent. The research sections were constructed with relatively few problems. Crack and joint surveys have been conducted on all research sections at intervals of less than 1 year since construction. No cracking was identified after the first winter season. The sawed joints also remained sealed through the first winter. At an age of approximately 1 1/2 years there was substantial cracking of the high-temperature-susceptible AC sections and substantial failure of the sealant material in the sawed joints. After almost 4 years, the asphalt pavement constructed with the high-temperature-susceptible AC produced a crack interval of 35 ft, the low-temperature-susceptible AC yielded an interval of 170 ft, and the low-temperature-susceptible AC with an increased AC content yielded an interval of 528 ft. The Pen-Vis number is an effective measure of temperature susceptibility of asphalt cements. The frequency of transverse cracking is affected by the temperature susceptibility of the AC. An increased AC content also reduces the frequency of transverse cracking.
Resumo:
Seal coat and chip seal treatments are commonly used as an economical treatment to provide a new surface to an old asphalt roadway. To be successful, the aggregate or chips must be held in place on the roadway by the asphalt binder over a long period of time. It is common, over time, that the binder becomes aged and brittle and loses its ability to be flexible and hold the aggregate in place. Modifiers have been introduced to extend the life and adhesion characteristics of asphaltic binders.
Resumo:
The use of voids in the mineral aggregate (VMA) criteria for proper mix design of hot mix asphalt (HMA) mixtures is a time honored and fairly successful tool. Recent developments in the field of asphalt mix design have encouraged the use of mixtures with a coarse aggregate structure to resist the affect of heavy traffic loads. By using the equations presented, which account for both aggregate gradation and the volumetric properties of the materials, the mix designer is able to judge the proper VMA requirement for each unique blend of materials. By applying the new equations, the most economical mix may be selected without great risk of reduced durability. Supporting data from field application is presented to illustrate the use of the equations.
Resumo:
The Iowa Department of Transportation (IDOT) received a Strategic Highway Research Program (SHRP) gyratory compactor in December 1994. Since then IDOT has been studying the ability of the compactor to analyze fundamental properties of aggregates such as shape, texture, and gradation by studying the volumetrics of the aggregate blends under a standard load using the SHRP gyratory compactor. This method of analyzing the volumetrics of aggregate blends is similar to SHRP's fine aggregate angularity procedure, which analyzes void levels in noncompacted aggregate blends, which in turn can be used to evaluate the texture or shape of aggregates, what SHRP refers to as angularity. Research is showing that by splitting the aggregate blend on the 2.36-mm (#8) sieve and analyzing the volumetrics or angularity of the separated blend, important fundamental properties can be determined. Most important is structure (the degree and location of aggregate interlock). In addition, analysis of the volumes of the coarse and fine portions can predict the voids in the mineral aggregate and the desired asphalt content. By predicting these properties, it can be determined whether the combined aggregate blend, when mixed with asphalt cement, will produce a mix with structural adequacy to carry the designed traffic load.
Resumo:
In recent years, ultra-thin whitetopping (UTW) has evolved as a viable rehabilitation technique for deteriorated asphalt cement concrete (ACC) pavement. Numerous UTW projects have been constructed and tested, enabling researchers to identify key elements contributing to their successful performance. These elements include foundation support, the interface bonding condition, portland cement concrete (PCC) overlay thickness, synthetic fiber reinforcement usage, joint spacing, and joint sealing. The interface bonding condition is the most important of these elements. It enables the pavement to act as a composite structure, thus reducing tensile stresses and allowing an ultra-thin PCC overlay to perform as intended. Although the main factors affecting UTW performance have been identified in previous research, neither the impact that external variables have on the elements nor the element interaction have been thoroughly investigated. The objective of this research was to investigate the interface bonding condition between an ultra-thin PCC overlay and an ACC base over time, considering the previously mentioned variables. Laboratory testing and full scale field testing were planned to accomplish the research objective. Laboratory testing involved monitoring interface strains in fabricated PCC/ACC composite test beams subjected to either static or dynamic flexural loading. Variables investigated included ACC surface preparation, PCC thickness, and synthetic fiber reinforcement usage. Field testing involved monitoring PCC/ACC interface stains and temperatures, falling weight deflectometer (FWD) deflection responses, direct shear strengths, and distresses on a 7.2 mile Iowa Department of Transportation (Iowa DOT) UTW project (HR-559). The project was located on Iowa Highway 21 between Iowa Highway 212 and U.S. Highway 6 in Iowa County, near Belle Plaine, Iowa. Variables investigated included ACC surface preparation, PCC thickness, synthetic fiber reinforcement usage, joint spacing, and joint sealing. This report documents the planning, equipment selection, and construction of the project built in 1994.
Resumo:
The major objective of this research project was to investigate how Iowa fly ashes influenced the chemical durability of portland cement based materials. Chemical durability has become an area of uncertainty because of the winter application of deicer salts (rock salts) that contain a significant amount of sulfate impurities. The sulfate durability testing program consisted of monitoring portland cement-fly ash paste, mortar and concrete test specimens that had been subjected to aqueous solutions containing various concentrations of salts (both sulfate and chloride). The paste and mortar specimens were monitored for length as a function of time. The concrete test specimens were monitored for length, relative dynamic modulus and mass as a function of time. The alkali-aggregate reactivity testing program consisted of monitoring the expansion of ASTM C311 mortar bar specimens that contained three different aggregates (Pyrex glass, Oreapolis and standard Ottawa sand). The results of the sulfate durability study indicated that the paste and concrete test specimens tended to exhibit surface spalling but only very slow expansive tendencies. This suggested that the permeability of the test specimens was controlling the rate of deterioration. Concrete specimens are still being monitored because the majority of the test specimens have expanded less than 0.05%; hence, this makes it difficult to estimate the service life of the concrete test specimens or to quantify the performance of the different fly ashes that were used in the study. The results of the mortar bar studies indicated that the chemical composition of the various fly ashes did have an influence on their sulfate resistance. Typically, Clinton and Louisa fly ashes performed the best, followed by the Ottumwa, Neal 4 and then Council Bluffs fly ashes. Council Bluffs fly ash was the only fly ash that consistently reduced the sulfate resistance of the many different mortar specimens that were investigated during this study. None of the trends that were observed in the mortar bar studies have yet become evident in the concrete phase of this project. The results of the alkali-aggregate study indicated that the Oreapolis aggregate is not very sensitive to alkali attack. Two of the fly ashes, Council Bluffs and Ottumwa, tended to increase the expansion of mortar bar specimens that contained the Oreapolis aggregate. However, it was not clear if the additional expansion was due to the alkali content of the fly ash, the periclase content of the fly ash or the cristobalite content of the fly ash, since all three of these factors have been found to influence the test results.
Resumo:
During 1986, the City of Des Moines placed an experimental asphaltic concrete overlay containing an ice-retardant additive (Verglimit) on Euclid Avenue (U.S. Highway 6). Verglimit is a chemical multi-component deicer which is added to the surface course of an asphalt overlay. The additive was uniformly distributed through the mix at the asphalt plant, which allows exposure of the particles as the finished surface wears under traffic. During a snowfall, the exposed particles attract and absorb moisture creating a deicing solution which dampens the pavement. The Verglimit additive used on this project cost $1,180 per metric ton. The Verglimit was added at a rate of 6.3% by weight, which was 126 pounds per ton, or $66.38 per ton of hot mix asphalt. The purchase of Verglimit additive was funded by the Iowa Department of Transportation through a research project recommended by the Highway Research Advisory Board. The pavement surface experienced severe wetting due to the additive's affinity for water immediately after the project was completed and during periods of high humidity. This wetting created slippery conditions both on the project itself and where vehicles tracked the additive. The only way to remove the slipperiness was by flushing the street with water. The ice-retardant overlay appears to perform as expected in reducing the adherence of ice and snow, especially at temperatures just below freezing. It performs better in light snowfalls than in heavy ones. The ice retardant overlay is effective in eliminating thin coatings of ice due to freezing drizzle or widespread frost. The accident data showed a reduction in the number of snow and ice related accidents but due to the low number of this type of accident the results are inconclusive.
Resumo:
This is Part 3 of a study of creep and resilient modulus testing of hot mix asphalt concrete. The creep and resilient modulus testing in Part 1 showed the improved load carrying characteristics of crushed particles. Cores from pavements drilled in Part 2 exhibited a poor correlation with rutting and creep/resilient modulus on pavement with a range of rut depths. The objective of Part 3 was to determine the relationship of creep and resilient modulus for 1) Marshall specimens from laboratory mixing for mix design; 2) Marshall specimens from construction plant mixing; and 3) cores drilled from the hot mixed asphalt pavement. The creep and resilient modulus data from these three sources exhibited substantial variations. No meaningful correlations of the results from these three sources were obtained.
Resumo:
The concrete admixture Ipanex (Registered trademark) manufactured by IPA Systems Inc. was submitted to the Iowa Department of Transportation (Iowa DOT) New Products Committee on April 15, 1998. The New Products Committee requested that the Iowa DOT Materials Laboratory evaluate the durability, corrosion inhibiting and concrete permeability reduction effects of this admixture. This report is intended to present the results of testing in Iowa DOT materials laboratories, review a Pennsylvania State University report, as well as review the IPA Systems Inc. marketing literature. The objective is to provide the New Products Committee with a recommendation concerning approval of this product based on the information gathered. The portland cement concrete admixture Ipanex (Registered trademark) did not show any significant benefit in terms of improvement in areas of permeability, chloride resistance and strength in the testing performed at the Iowa DOT. The literature and reports reviewed did not provide enough credible evidence to refute this conclusion. Additionally, the benefits ascribed to this product can be more economically achieved using other currently available products such as slag and silica fume. The recommendation is that this product not be approved for use on State projects in Iowa.
Resumo:
A review of the Iowa Department of Transportation's field data collection and reporting system has been performed. Included were several systems used by the Office of Construction and Local Jurisdictions. The entire field data collection and reporting systems for asphalt cement concrete (ACC) paving, portland cement concrete (PCC) paving, and PCC structures were streamlined and computerized. The field procedures for materials acceptance were also reviewed. Best practices were identified and a method was developed to prioritize materials so transportation agencies could focus their efforts on high priority materials. Iowa State University researchers facilitated a discussion about Equal Employment Opportunity (EEO) and Affirmative Action (AA) procedures between the Office of Construction field staff and the Office of Contracts. A set of alternative procedures was developed. Later the Office of Contracts considered these alternatives as they developed new procedures that are currently being implemented. The job close-out package was reviewed and two unnecessary procedures were eliminated. Numerous other procedures were reviewed and flowcharted. Several changes have been recommended that will increase efficiency and allow staff time to be devoted to higher priority activities. It is estimated the improvements in ACC paving, PCC paving and structural concrete will by similar to three full time equivalent (FTE) positions to field construction, field materials and Office of Materials. Elimination of EEO interviews will be equivalent to one FTE position. It is estimated that other miscellaneous changes will be equivalent to at least one other FTE person. This is a total five FTEs. These are conservative estimates based on savings that are easily quantified. It is likely that total positive effect is greater when items that are difficult to quantify are considered.
Resumo:
Asphalt concrete resurfacing is the most commonly utilized rehabilitation practice used by the Iowa Department of Transportation. The major problem with asphalt concrete resurfacing is the reflective cracking from underlying cracks and joints in the portland cement concrete (PCC) pavement. Cracking and seating the PCC prior to an asphalt overlay was the construction method evaluated in this project. There was cracking and seating on portions of the project and portions were overlaid without this process. There were also different overlay thicknesses used. Comparisons of crack and seating to the normal overlay method and the different depths are compared in this report. Cracking and seating results in some structural loss, but does reduce the problem of reflection cracking.
Resumo:
The amount of asphalt cement in asphaltic concrete has a definite effect on its durability under adverse conditions. The expansion of the transportation system to more and heavier loads has also made the percentage of asphalt cement in a mix more critical. The laboratory mixer does not duplicate the mixing effect of the large pugmills; therefore, it is impossible to be completely sure of the asphalt cement needed for each mix. This percentage quite often must be varied in the field. With a central testing laboratory and the high production of mixing plants today, a large amount of asphaltic concrete is produced before a sample can be tested to determine if the asphalt content is correct. If the asphalt content lowers the durability or stability of a mix, more maintenance will be required in the future. The purpose of this project is to determine the value of a mobile laboratory in the field, the feasibility of providing adequate, early testing in the field, and correlation with the central laboratory. The major purpose was to determine as soon as possible the best percentage of asphalt.