244 resultados para Road materials Permeability
Resumo:
The BPR type Roughometer has been used by the Iowa State Highway Commission since 1955 for the evaluation of the relative roughness of the various Iowa road surfaces. Since the commencement of this program, standardized information about the roughness of the various Iowa roads with respect to their type, construction, location and usage has been obtained. The Roughometer has also served to improve the economics and quality of road construction by making the roughness results of various practices available to all who are interested. In 1965, the Portland Cement Association developed a device known as the PCA Road Meter for measuring road roughness. Mounted in a regular passenger car, the Road Meter is a simple electromechanical device of durable construction which can perform consistently with extremely low maintenance. In 1967, the Iowa State Highway Commission's Laboratory constructed a P.C.A. type Road Meter in order to provide an efficient and reliable method for measuring the Present Serviceability Index for the state's highways. Another possibility was that after considerable testing the Road Meter might eventually replace the Roughometer. Some advantages of the Road Meter over the Roughometer are: (1) Road Meter tests are made by the automobile driver and one assistant without the need of traffic protection. The Roughometer has a crew of four men; two operating the roughometer and two driving safety vehicles. (2) The Road Meter is able to do more miles of testing because of its faster testing speed and the fa.ct that it is the only vehicle involved in the testing. (3) Because of the faster testing speed, the Road Meter gives a better indication of how the road actually rides to the average highway traveler. (4) The cost of operating a Road Meter is less than that of a Roughometer because of the fewer number of vehicles and men needed in testing.
Resumo:
In recent years the Iowa Department of Transportation has shifted emphasis from the construction of new roads to the maintenance and preservation of existing highways. A need has developed for evaluating pavements structurally to select the correct rehabilitation strategy and to properly design a pavement overlay if necessary. Road Rater non-destructive testing has fulfilled this need and has been used successfully to evaluate pavement and subgrade conditions and to design asphaltic concrete overlays and portland cement concrete overlays. The Iowa Road Rater Design Method has been simplified so that it may be easily understood and used by various individuals who are involved in pavement restoration and management. Road Rater evaluation techniques have worked well to date and have been verified by pavement coring, soils sampling and testing. Void detection testing has also been performed, and results indicate that the Road Rater can be used to locate pavement voids and that Road Rater evaluation techniques are reasonably accurate. The success of Road Rater research and development has made dynamic deflection test data an important pavement management input.
Resumo:
A new paint testing device was built to determine the resistance of paints to darkening due to road grime being tracked onto them. The device consists of a tire rotating on a sample drum. Soil was applied to the tire and then tracked onto paint samples which were attached to the drum. A colorimeter was used to measure the lightness of the paints after being tracked. Lightness is measured from 0 (absolute black) to 100 (absolute white). Four experiments were run to determine the optimum time length to track a sample, the reproducibility, the effects of different soils, and the maximum acceptable level for darkening of a paint. The following conclusions were reached: 1) the optimum tracking time was 10 minutes; 2) the reproducibility had a standard deviation of 1.5 lightness units; 3) different soils did not have a large effect on the amount of darkening on the paints; 4) a maximum acceptable darkness could not be established based on the limited amount of data; and 5) a correlation exists between the paints which were darkening in the field and the paints which were turning the darkest on the tracking wheel.
Resumo:
The Iowa Department of Transportation has been using the Bureau of Public Roads (BPR) Roughometer as part of its detour analysis process for more than 20 years. Advances in technology have made the BPR Roughometer obsolete for ride quality testing. High-speed profilers that can collect the profile of the road at highway speeds are the standard ride instruments for determining ride quality on pavements. The objective of the project was to develop a correlation between the BPR Roughometer and the high-speed laser South Dakota type Profiler (SD Profiler). Nineteen pavement sections were chosen to represent the range of types and conditions for detours. Three computer simulation models were tested on the profiler profiles. The first model is the International Ride Index (IRI) which is considered the standard index for reporting ride quality in the United States. The second model is the Ride Number (RN) developed by the University of Michigan Transportation Research Institute and the third model used is a quarter-car simulation of the BPR Roughometer (ASTM E-1170) which should match the speed and range of roadway features experienced by Iowa's BPR Roughometer Unit. The BPR Roughometer quarter-car model provided the best overall correlation with Iowa's BPR Roughometer.
Resumo:
This report presents the results of a number of detailed Iowa access management case studies. Case studies were selected to provide a cross-section of locations and community sizes in Iowa as well as a variety of project types. Generally, access management projects completed during the mid-1990s were chosen as case studies. Projects ranging from driveway consolidation to full raised medians were analyzed on a before and after basis in terms of traffic safety, traffic operations, and adjacent business vitality. Sources of information used for the case study analysis included: road project files; traffic accident records; state sales tax records; and personal interviews of business owners, business customers, and local officials. The case study results from Iowa essentially confirm results of previous access management research from around the nation. Recent access in Iowa had significant, positive impacts in terms of traffic safety. The average reduction of annual accidents and accident rates on improved roadways was approximately 40%. Improvements in access management also led to significantly better roadway operations for most case studies. Although a small number of individual businesses do report sales losses and/or customer complaints once projects have been completed, access management projects in Iowa have not had an adverse impact on the majority of businesses located along them. In fact, some access management projects in Iowa seem to have contributed to an improved business environment along the corridors that have been improved. The results from the Iowa case studies presented in this report will be used to develop access management education materials for Iowa transportation professionals and other audiences interested in the impacts of access management.
Resumo:
This project continues the research which addresses the numerous bridge problems on the Iowa secondary road system. It is a continuation (Phase 2) of Project HR-382, in which two replacement alternatives (Concept 1: Steel Beam Precast Units and Concept 2: Modification of the Benton County Beam-in-Slab Bridge) were investigated. In previous research for concept 1, a precast unit bridge was developed through laboratory testing. The steel-beam precast unit bridge requires the fabrication of precast double-tee (PCDT) units, each consisting of two steel beams connected by a reinforced concrete deck. The weight of each PCDT unit is minimized by limiting the deck thickness to 4 in., which permits the units to be constructed off-site and then transported to the bridge site. The number of units required is a function of the width of bridge desired. Once the PCDT units are connected, a cast-in-place reinforced concrete deck is cast over the PCDT units and the bridge railing attached. Since the steel beam PCDT unit bridge design is intended primarily for use on low-volume roads, used steel beams can be utilized for a significant cost savings. In previous research for concept 2, an alternate shear connector (ASC) was developed and subjected to static loading. In this investigation, the ASC was subjected to cyclic loading in both pushout specimens and composite beam tests. Based on these tests, the fatigue strength of the ASC was determined to be significantly greater than that required in typical low volume road single span bridges. Based upon the construction and service load testing, the steel-beam precast unit bridge was successfully shown to be a viable low volume road bridge alternative. The construction process utilized standard methods resulting in a simple system that can be completed with a limited staff. Results from the service load tests indicated adequate strength for all legal loads. An inspection of the bridge one year after its construction revealed no change in the bridge's performance. Each of the systems previously described are relatively easy to construct. Use of the ASC rather than the welded studs significantly simplified the work, equipment, and materials required to develop composite action between the steel beams and the concrete deck.
Resumo:
Most states, including Iowa, have a significant number of substandard bridges. This number will increase significantly unless some type of preventative maintenance is employed. Both the Iowa Department of Transportation and Iowa counties have successfully employed numerous maintenance, repair and rehabilitation (MR&R) strategies for correcting various types of deficiencies. However, successfully employed MR&R procedures are often not systematically documented or defined for those involved in bridge maintenance. This study addressed the need for a standard bridge MR&R manual for Iowa with emphasis for secondary road applications. As part of the study, bridge MR&R activities that are relevant to the state of Iowa have been systematically categorized into a manual, in a standardized format. Where pertinent, design guidelines have been presented. Material presented in this manual is divided into two major categories: 1) Repair and Rehabilitation of Bridge Superstructure Components, and 2) Repair and Rehabilitation of Bridge Substructure Components. There are multiple subcategories within both major categories that provide detailed information. Some of the detailed information includes step-by-step procedures for accomplishing MR&R activities, material specifications and detailed drawings where available. The source of information contained in the manual is public domain technical literature and information provided by Iowa County Engineers. A questionnaire was sent to all 99 counties in Iowa to solicit information and the research team personally solicited input from many Iowa counties as a follow-up to the questionnaire.
Resumo:
In recent years, it has become apparent that the design and maintenance of pavement drainage extends the service life of pavements. Most pavement structures now incorporate subsurface layers. Part of the function of these subsurface layers is to drain away excess water, which can be extremely deleterious to the life of the pavement. To assure the effectiveness of such drainage layers after they have been spread and compacted, simple, rapid, in-situ permeability and stability testing and end-result specification are needed. This report includes conclusions and recommendations related to four main study objectives: (1) Determine the optimal range for in-place stability and in-place permeability based on Iowa aggregate sources; (2) Evaluate the feasibility of an air permeameter for determining the permeability of open and well-graded drainage layers in situ; (3) Develop reliable end-result quality control/quality assurance specifications for stability and permeability; and (4) Refine aggregate placement and construction methods to optimize uniformity.
Resumo:
Cold in-place recycling (CIR) has become an attractive method for rehabilitating asphalt roads that have good subgrade support and are suffering distress related to non-structural aging and cracking of the pavement layer. Although CIR is widely used, its use could be expanded if its performance were more predictable. Transportation officials have observed roads that were recycled under similar circumstances perform very differently for no clear reason. Moreover, a rational mix design has not yet been developed, design assumptions regarding the structural support of the CIR layer remain empirical and conservative, and there is no clear understanding of the cause-effect relationships between the choices made during the design/construction process and the resulting performance. The objective of this project is to investigate these relationships, especially concerning the age of the recycled pavement, cumulative traffic volume, support conditions, aged engineering properties of the CIR materials, and road performance. Twenty-four CIR asphalt roads constructed in Iowa from 1986 to 2004 were studied: 18 were selected from a sample of roads studied in a previous research project (HR-392), and 6 were selected from newer CIR projects constructed after 1999. This report summarizes the results of a comprehensive program of field distress surveys, field testing, and laboratory testing for these CIR asphalt roads. The results of this research can help identify changes that should be made with regard to design, material selection, and construction in order to lengthen the time between rehabilitation cycles and improve the performance and cost-effectiveness of future recycled roads.
Resumo:
The inadequate supply of suitable road surfacing material in the southern part of Iowa raises the question of the possibility of utilizing certain shales abundant in this area. These carbonaceous shales commonly overlie the coal beds and may also be found as impurities in the coal seams. They constitute the "slate" which with minor amounts of coal makes up the "gob" piles at the mines. These shales frequently contain enough carbonaceous material to burn. Those which do not usually require only a relatively small amount of coal mixed with them to support combustion. As a result, the "gob" piles frequently burn. The residual shale material is frequently used locally as a road surfacing material. However, since there is no control over the burning, there is no assurance that the product is the most suitable which might be produced or that it is even uniform in its properties. To determine if a controlled burning would produce a suitable road building product economically a research project "Use of Shales as Highway Materials" (ISHC Project HR-21, IEES Project 299-S) was set up in the Iowa Engineering Experiment Station with funds provided by the Iowa State Highway Commission, This project was supervised by Charles Frush, formerly Assistant Professor of Mining Engineering at Iowa State University. The various shales were subjected to controlled burning, and the solid residues were tested for their suitability for highway use.
Resumo:
Iowa Highway Commission Project HR-33, "Characteristics of Chemically Treated Roadway Surfaces", was investigated at the Iowa Engineering Experiment Station under Project 375-S. The purpose of the project as originally proposed was to study the physical and chemical characteristics of chemically treated roadway surfaces. All chemical treatments were to be included, but only sodium chloride and calcium chloride treated roadways were investigated. The uses of other types of chemical treatment were not discovered until recently, notably spent sulfite liquor and a commercial additive. Costs of stabilized secondary roads in Hamilton County averaged $4300.00 per mile even though remanent soil-aggregate material was used. The cost of similar roads in Franklin County was $4400.00 per mile. The Franklin County road surfaces were constructed entirely from materials that were hauled to the road site. Costs in Butler County were a little over $3000.00 per mile some eight years ago. Chemical investigations indicate that calcium chloride and sodium chloride are lost through leaching. Approximately 95 percent of the sodium chloride appears to have been lost, and nearly 65 percent of the calcium chloride has disappeared. The latter value may be much in error since surface dressings of calcium chloride are commonly used and have not been taken into account. Clay contents of the soil-aggregate-chemical stabilized roads range from about 6 to ll percent, averaging 8 or 9 percent. The thicknesses of stabilized mats are usually 2 to 4 inches, with in-place densities ranging from 130 to 145 pcf. Generally the densities found in sodium chloride stabilized roads were slightly higher than those found in the calcium chloride stabilized roads.
Resumo:
Results are presented of triaxial testing of three crushed limestones to which either hydrated high-calcium lime, sodium chloride or calcium chloride had been added. Lime was added at rates of 1, 3, 10 and 16 percent, chlorides were added at 0.5 percent rate only. Speciments were compacted using vibratory compaction apparatus and were tested in triaxial compression using lateral pressures from 10 to 100 psi. Triaxial test results indicate that: (1) sodium chloride slightly decreased the angle of internal friction and increased cohesion, (2) calcium chloride slightly increased the angle of internal friction and decreased cohesion, and (3) lime had no appreciable effect on angle of internal friction but increased cohesion, decreased density and increased pore water pressure.
Resumo:
A highway base course may be defined as a layer of granular material which lies immediately below the wearing surface of a pavement and must possess high resistance to deformation in order to withstand pressures imposed by traffic. A material commonly used for base course construction is crushed limestone. Sources of limestone, acceptable for highway bases in the state of Iowa, occur almost entirely in the Pennsylvanian, Mississippian and Devonian strata. Performance records of the latter two have been quite good, while material from the Pennsylvanian stratum has failed on numerous occasions. The study reported herein is one segment of an extensive research program on compacted crushed limestone used for flexible highway base courses. The primary goals of the total study are: 1. Determination of a suitable and realistic laboratory method of compaction. 2. Effect of gradation, and mineralogy of the fines, on shearing strength. 3. Possible improvement of the shear strength with organic and inorganic chemical stabilization additives. Although the study reported herein deals primarily with the third goal, information gathered from work on the first two was required for this investigation. The primary goal of this study was the evaluation of various factors of stability of three crushed limestones when treated with small amounts of type I Portland cement. Investigation of the untreated materials has indicated that shear strength alone is not the controlling factor for stability of crushed stone bases. Thus the following observations were made in addition to shear strength parameters, to more adequately ascertain the stability of the cement treated materials: 1. Volume change during consolidation and shear testing. 2. Pore pressure during shear. The consolidated-undrained triaxial shear test was used for determination of the above factors.
Resumo:
Research project HR-155 was initiated to study soil erosion problems along the secondary road system in Iowa and to find a substitute for straw for the control of soil erosion during the period of seed establishment. Accordingly, six field research sites were established to test the ability of commercial soil conditioners to control soil erosion. The six field research sites were selected on the basis of terrain and type of soil material exposed on the cut-slope areas.
Resumo:
The Iowa Department of Transportation Materials Laboratory personnel developed a process to produce a road deicer consisting of sand grains coated with calcium magnesium acetate (CMA). Research project HR-253 was established to explore commercial production of the CMA/sand deicer by an independent contractor. About 60 tons of the deicer was produced at a ready-mix concrete facility and evaluated in the field during the 1983-1984 winter season. The initial contracted production of CMA/sand deicer under research project HR-253 identified two major problems: (1) excessive unreacted lime in the final product, and (2) formation of spherical lumps within the product requiring subsequent size reduction. It was recommended in the HR-253 report that additional deicer be produced as a continuation of the project in order to address these problems and further develop the production process. A contract was negotiated with W. G. Block Co. to produce and deliver 50 tons of additional deicer. This addendum report covers this production effort including descriptions and results of all modifications of equipment and process procedures used.