249 resultados para ACCELERATED PORTLAND-CEMENT
Resumo:
The road paving cost continues to increase and the backlog of projects waiting for funding is growing. Finding a more cost-effective way to use the available money to pave roads will result in more miles of road being paved with the same amount of money. This project is in Cass County on G35 between US 71 and Norway-Center. It consists of a thin layer of asphalt over a base designed to achieve stability while having some permeability. This project was paved in 1996. An asphalt cement concrete pavement was chosen for the project based on cost, convenience, and historic portland cement concrete problems in Cass County. The new pavement gives quicker access time to farms and residences.
Resumo:
The BPR type Roughometer has been used by the Iowa State Highway Commission since 1955 for the evaluation of the relative roughness of the various Iowa road surfaces. Since the commencement of this program, standardized information about the roughness of the various Iowa roads with respect to their type, construction, location and usage has been obtained. The Roughometer has also served to improve the economics and quality of road construction by making the roughness results of various practices available to all who are interested. In 1965, the Portland Cement Association developed a device known as the PCA Road Meter for measuring road roughness. Mounted in a regular passenger car, the Road Meter is a simple electromechanical device of durable construction which can perform consistently with extremely low maintenance. In 1967, the Iowa State Highway Commission's Laboratory constructed a P.C.A. type Road Meter in order to provide an efficient and reliable method for measuring the Present Serviceability Index for the state's highways. Another possibility was that after considerable testing the Road Meter might eventually replace the Roughometer. Some advantages of the Road Meter over the Roughometer are: (1) Road Meter tests are made by the automobile driver and one assistant without the need of traffic protection. The Roughometer has a crew of four men; two operating the roughometer and two driving safety vehicles. (2) The Road Meter is able to do more miles of testing because of its faster testing speed and the fa.ct that it is the only vehicle involved in the testing. (3) Because of the faster testing speed, the Road Meter gives a better indication of how the road actually rides to the average highway traveler. (4) The cost of operating a Road Meter is less than that of a Roughometer because of the fewer number of vehicles and men needed in testing.
Resumo:
A new machine, the ROTO-MILL Profiler, became available in early 1976. This machine, manufactured by CMI Corporation of Oklahoma City, Oklahoma provides pavement surface Scarification at a much higher production rate than was previously possible. Iowa had the opportunity to observe and evaluate this machine on two separate sections of primary portland cement concrete pavement in October, 1976. The marked improvement in the profile index and the skid resistance indicates this machine may be considered a viable method for improving rideability and skid resistance of a roadway that is otherwise reasonably sound.
Resumo:
Fine limestone aggregate is abundant in several areas of the state. The aggregate is a by-product from the production of concrete stone. Roller compacted concrete (RCC) is a portland cement concrete mixture that can be produced with small size aggregate. The objective of the research was to evaluate limestone screenings in RCC mixes. Acceptable strength and freeze/thaw durability were obtained with 300 pounds of portland cement and 260 pounds of Class C fly ash. The amount of aggregate passing the number 200 sieve ranged from 4.6 to 11 percent. Field experience in Iowa indicates that the aggregate gradation is more critical to placeability and compactibility than laboratory strength and durability.
Resumo:
Two specialty cements are currently being marketed as a way to achieve portland cement concrete pavement opening strengths at less than 12 hours after placement. The cements are Pyrament from Pyrament/Lone Star Industries of Houston, Texas and Ideal Regulated-Set (RS) Portland Cement from Ideal Cement Company of Saratoga, Arkansas. The objective of the study was to evaluate the strength gain and durability of concrete produced with Pyrament and Ideal RS cement as Fast Track concrete. Mixes with 610 lb/cu yd (362 kg/cu m) cement were made and tested. Both Pyrament and Ideal RS are capable of producing pavement opening times less than 12 hours. Recent changes to Ideal RS cement have produced concrete flexural strengths of 550 psi (3792 kPa) at 4 hours in Iowa tests. Freeze/thaw durability of the concrete was not adversely affected by using either cement.
Resumo:
The penetration of chloride ions from deicing salts into the portland cement concrete of bridge decks can cause corrosion and serious damage to the reinforcing steel. Concrete properties which prevent chloride penetration into the bridge deck and provide a good structural and economic wearing surface are desirable. A variety of mix designs have been tried in the past in search of improved performance and lower costs for bridge deck overlay concrete. A group of mixes with various designs have been tested in this project and results are being compared to determine which concrete mix appears to be the most cost effective and resistant to chloride penetration for bridge deck overlay use.
Resumo:
In recent years the Iowa Department of Transportation has shifted emphasis from the construction of new roads to the maintenance and preservation of existing highways. A need has developed for evaluating pavements structurally to select the correct rehabilitation strategy and to properly design a pavement overlay if necessary. Road Rater non-destructive testing has fulfilled this need and has been used successfully to evaluate pavement and subgrade conditions and to design asphaltic concrete overlays and portland cement concrete overlays. The Iowa Road Rater Design Method has been simplified so that it may be easily understood and used by various individuals who are involved in pavement restoration and management. Road Rater evaluation techniques have worked well to date and have been verified by pavement coring, soils sampling and testing. Void detection testing has also been performed, and results indicate that the Road Rater can be used to locate pavement voids and that Road Rater evaluation techniques are reasonably accurate. The success of Road Rater research and development has made dynamic deflection test data an important pavement management input.
Resumo:
The goal in highway construction and operation has shifted from method based specifications to specifications relating desired performance attributes to materials, mix designs, and construction methods. Shifting from method specifications to performance based specifications can work as an incentive or disincentive for the contractor to improve performance or extend pavement life. This literature search was directed at a review of existing portland cement concrete performance specification development, and the criteria that can effectively measure pavement performance. The criteria identified in the literature include concrete strength, slab thickness, air content, initial smoothness, water-cement ratio, unit weight, and slump. A description of each criterion, along with the advantages, disadvantages, and test methods for each are identified. Also included are the results from a survey that was sent out to various state, federal, and trade agencies. The responses indicated that 53% currently use or are developing a performance based specification program. Of the 47% of agencies that do not use a performance based specification program, over 34% indicated that they would consider a similar program. The most commonly measured characteristics include thickness, strength, smoothness, and air content. Lastly recommendations and conclusions are made regarding other factors that affect pavement performance and a proposed second phase of the research is suggested. The research team suggests that a regional expert task group be formed to identify performance levels and criteria. The results of that effort will guide the research team in the development of new or revised specifications.
Resumo:
Class A, B, and C concrete paving mixes were tested for compressive strength at 40°F and 73°F, both with and without fly ash substitution for 15% of the portland cement. Two Class C ashes and one Class F ash from Iowa approved sources were examined in each mix. The purpose of the study was to provide data on cool weather strength development of concrete paving mixes utilizing Iowa materials. In all cases except one, the fly ash concretes exhibited lower 7 and 28- day compressive strengths at 40°F than control mixes. The continuation of the October 15 cut-off date for the use of fly ash concrete is recommended.
Resumo:
Examination of field portland cement concrete cores, from Iowa pavements with premature deterioration, reveals extensive infilling of calcium sulfate aluminum (CSA) compound in their air voids. A previous study (Phase I) has shown some evidence of the correlation between freeze-thaw durability of concretes and ettringite infilling. To further verify the previous observation, a more extensive experimental program was conducted in this Phase 2 study. A total of 101 concrete mixes were examined. Seven cements, six fly ashes, two water reducers and three coarse aggregates were used in the concrete mixes. Specimens were under moist curing for up to 223 days before being subjected to the freeze-thaw cycling. An environmental treatment consisting of three consecutive wet [70 deg F (21 deg C) in distilled water]/dry [120 deg F (49 deg C) in oven] cycles was applied to some specimens. Immediately prior to the freeze-thaw cycling, most specimens were examined by a low-vacuum scanning electron microscope (SEM) for their microstructure. The results obtained further demonstrate the correlation between concrete freeze-thaw response and CSA compound infilling in the air voids. The extent of the infilling depends on the period of moist curing as well as the wet/dry treatment. The extent of the infilling also relates to materials used. Concrete mixes with extensive infilling are more vulnerable to the freeze-thaw attack. Based on the obtained results, material criteria on cements and fly ashes for mainline paving were proposed for minimizing potential infilling of CSA compound in concrete.
Resumo:
The durability of concrete is a most important aspect in pavement life. Deterioration of the interstate portland cement concrete pavement has prompted various studies of factors which may contribute to the durability. Studies of cores taken from deteriorated areas indicated that the larger particles of coarse aggregate may contribute greatly to the problem. This indication was mainly due to the analysis of the cracking pattern which showed that most of the cracks passed through the larger aggregates and the larger aggregate particles were more cracked than the smaller particles. The purpose of this project is to determine if the size of the coarse aggregate has a bearing on the durability of freeze and thaw beams. A secondary purpose of this project is to determine what effect the method of curing and proportions have on the durability of freeze and thaw beams.
Resumo:
The problems of laboratory compaction procedures, the effect of gradation and mineralogy on shearing strength, and effect of stabilizing agents on shearing strength of granular base course mixes are discussed. For the materials tested, a suitable laboratory compaction procedure was developed which involves the use of a vibratory table to prepare triaxial test specimens. A computer program has been developed to facilitate the analysis of the test data of the effect of gradation and mineralogy on shearing strength of soils. The effects of the following materials have been selected for evaluation as stabilizing agents’ portland cement, sodium and calcium chloride, lime organic cationic waterproofer, and asphaltic materials.
Resumo:
The problems of laboratory compaction procedures, the effect of gradation and mineralogy on shearing strength, and effect of stabilizing agents on shearing strength of granular base course mixes are discussed. For the materials tested, a suitable laboratory compaction procedure was developed which involves the use of a vibratory table to prepare triaxial test specimens. A computer program has been developed to facilitate the analysis of the test data of the effect of gradation and mineralogy on shearing strength of soils. The effects of the following materials have been selected for evaluation as stabilizing agents’ portland cement, sodium and calcium chloride, lime organic cationic waterproofer, and asphaltic materials.
Factors Influencing Stability of Granular Base Course Mixes, Progress Report, HR-99, 1964 (November)
Resumo:
The problems of laboratory compaction procedures, the effect of gradation and mineralogy on shearing strength, and effect of stabilizing agents on shearing strength of granular base course mixes are discussed. For the materials tested, a suitable laboratory compaction procedure was developed which involves the use of a vibratory table to prepare triaxial test specimens. A computer program has been developed to facilitate the analysis of the test data of the effect of gradation and mineralogy on shearing strength of soils. The effects of the following materials have been selected for evaluation as stabilizing agents’ portland cement, sodium and calcium chloride, lime organic cationic waterproofer, and asphaltic materials.
Resumo:
The objective of this research was to evaluate the performance of portland cement concrete pavement contraction joints utilizing a variety of sealants and joint preparations and to identify an effective sealant system. The variables evaluated were: (1) sealant material; (2) joint preparation; (3) size of saw cut (sealant reservoir); and (4) the use of backing material. This progress report contains project results to date.