92 resultados para water erosion
Resumo:
Report of Conservation Program Summary produced by Iowa Departmment of Agriculture and Land Stewardship
Resumo:
Designation of Co-benefits and Its Implication for Policy: Water Quality versus Carbon Sequestration in Agricultural Soils, The
Resumo:
Tillage and manure application practices significantly impact surface and ground water quality in Iowa and other Midwestern states. Tillage and manure application that incorporates residue and disturbs soil result in higher levels of soil erosion and surface runoff. Phosphorus and sediment loading are closely linked to the increase in soil erosion and surface water runoff. Manure application (i.e., injection or incorporation) reduces surface residue cover, which can worsen soil erosion regardless of the tillage management system being used. An integrated system approach to manure and tillage management is critical to ensure effi cient nutrient use and improvement of soil and water quality. This approach, however, requires changes in manure application technology and tillage system management to ensure the success of an integrated
Resumo:
Report of Conservation Program Summary produced by Iowa Departmment of Agriculture and Land Stewardship
Resumo:
A newsletter produced by Iowa Department of Agriculture and Land Stewardship. The DSC is responsible for state leadership in the protection and management of soil, water and mineral resources, assisting soil and water conservation districts and private landowners to meet their agricultural and environmental protection needs.
Resumo:
What is in this review produced by The Iowa Department of Agricultural and Land Stewardship: Special Points of Interest: • CREP wetlands remove 40-90% of the nitrate and 90+% of the herbicide in tile drainage water from upper- lying croplands. • The watershed approach is comprehensive, efficient and effective resource management. • The Mines & Minerals Bureau, through the AML Program, worked with various watershed groups to secure an additional $1 million dollars in funding for the construction on AML projects in Marion and Mahaska counties. • Iowa Learning Farm is Building a Culture of Conservation: Farmer to Farmer—Iowan to Iowan.
Resumo:
The purpose of this Iowa manual is to serve as a guide, provide solutions, and offer suggestions on construction sites to comply with Iowa's current soil erosion and storm water runoff regulations. This need is particularly important when land undergoes a land use change. Information provided in this manual will be helpful to land owners, developers, consultants, contractors, planners, local government, as well as the general public. This manual is intended to provide techniques that will meet the mandates of current legislation. Innovations that will benefit the user and still provide effective control are encouraged.
Resumo:
This issue review provides an overview of funds dispersed for the soil and water conservation cost share program in the Department of Agriculture and Land Stewardship, DALS.
Resumo:
Prior to European settlement, wetland basins covered 4 to 6 million acres, or approximately 11% of Iowa's surface area. Wetlands were part of every watershed in the state, but nearly 95% of them have been drained for agriculture. As Iowa was settled wetlands were drained and developed, resulting in the loss of wildlife habitat, damage to water quality, rapid topsoil erosion, and increased incidents and severity of flooding. The condition of Iowa’s remaining wetlands is poorly known. The goal of this project was to assess the ecological condition of prairie pothole wetlands in a defined region of north-central Iowa. This project has worked to develop and establish our wetland sampling methods, while providing baseline data regarding the basic chemical, physical, and biological status of Iowa’s permanent and semi-permanent wetland resources. The baseline data obtained from our monitoring methods is mainly in the form of numerical values derived from the lab analyses of our samples. This data will be used to begin building a database to interpret ecological condition changes in Iowa’s wetlands as the sampling regime and assessment methodology are repeated over time.
Resumo:
State Agency Audit Report State Revolving Fund - Clean Water & Drinking Programs
Resumo:
Report produced by Iowa Departmment of Agriculture and Land Stewardship
Resumo:
Investigative report produced by Iowa Citizens' Aide/Ombudsman
Resumo:
State Agency Audit Report
Resumo:
City Audit Report
Resumo:
The development of the field-scale Erosion Productivity Impact Calculator (EPIC) model was initiated in 1981 to support assessments of soil erosion impacts on soil productivity for soil, climate, and cropping conditions representative of a broad spectrum of U.S. agricultural production regions. The first major application of EPIC was a national analysis performed in support of the 1985 Resources Conservation Act (RCA) assessment. The model has continuously evolved since that time and has been applied for a wide range of field, regional, and national studies both in the U.S. and in other countries. The range of EPIC applications has also expanded greatly over that time, including studies of (1) surface runoff and leaching estimates of nitrogen and phosphorus losses from fertilizer and manure applications, (2) leaching and runoff from simulated pesticide applications, (3) soil erosion losses from wind erosion, (4) climate change impacts on crop yield and erosion, and (5) soil carbon sequestration assessments. The EPIC acronym now stands for Erosion Policy Impact Climate, to reflect the greater diversity of problems to which the model is currently applied. The Agricultural Policy EXtender (APEX) model is essentially a multi-field version of EPIC that was developed in the late 1990s to address environmental problems associated with livestock and other agricultural production systems on a whole-farm or small watershed basis. The APEX model also continues to evolve and to be utilized for a wide variety of environmental assessments. The historical development for both models will be presented, as well as example applications on several different scales.