38 resultados para android, porting, pjsip, pjproject, binder


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Oxidation is the primary cause of long-term aging in asphalt pavements. As a pavement oxidizes, it stiffens and can eventually crack. The use of an antioxidant as a performance enhancer in an asphalt binder could delay aging, thus increasing the life of an asphalt pavement. Lignin is a highly available and well-studied antioxidant. A wet-mill ethanol plant produces several co-products, some of which contain lignin. The use of lignin from ethanol production could provide a benefit to asphalt pavements and also give more value to the co-products. The following research examined the effects of lignin on asphalt pavements. Three lignin-containing co-products were separately combined with four asphalt binders in varying amounts to determine the optimum amount of co-product that would provide the greatest benefit to the asphalt binders. The asphalt binder and co-product blends were evaluated according to Superpave specifications and performance graded on a continuous scale. The data indicated a stiffening effect on the binder caused by the addition of the co-products. The more a co-product was added, the more a binder stiffened. Binder stiffening benefited the high temperature properties and the low temperature binder properties were negatively affected. However, the low temperature stiffening effects were small and in many cases not significant. The co-products had an overall effect of widening the temperature range of the binders. This result suggests some antioxidant activity between the binder and the lignin. Testing with a fourth co-product with no lignin supported the idea that lignin acts as an antioxidant. The samples with no lignin aged significantly more than the samples with lignin. Infrared spectrometry also supported the idea that lignin acts as an antioxidant by observing decreases in some oxidative aging products.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The objective of this research was to evaluate the performance of the product Ultracote® (a polymer based additive produced by Ultrapave, a division of Goodyear) as an aggregate pre-treatment for the reduction of asphalt binder absorption in hot mix asphalt (HMA). The product was tested with a paving project in Louisa county, Iowa with aggregate that had historically shown very high asphalt binder absorption. Results of the testing did not provide any evidence of reduction in binder absorption.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

For a variety of reasons, the concrete construction industry is not sustainable. First, it consumes huge quantities of virgin materials. Second, the principal binder in concrete is portland cement, the production of which is a major contributor to greenhouse gas emissions that are implicated in global warming and climate change. Third, many concrete structures suffer from lack of durability which has an adverse effect on the resource productivity of the industry. Because the high-volume fly ash concrete system addresses all three sustainability issues, its adoption will enable the concrete construction industry to become more sustainable. In this paper, a brief review is presented of the theory and construction practice with concrete mixtures containing more than 50% fly ash by mass of the cementitious material. Mechanisms are discussed by which the incorporation of high volume of fly ash in concrete reduces the water demand, improves the workability, minimizes cracking due to thermal and drying shrinkage, and enhances durability to reinforcement corrosion, sulfate attack, and alkali-silica expansion. For countries like China and India, this technology can play an important role in meeting the huge demand for infrastructure in a sustainable manner.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Moisture sensitivity of Hot Mix Asphalt (HMA) mixtures, generally called stripping, is a major form of distress in asphalt concrete pavement. It is characterized by the loss of adhesive bond between the asphalt binder and the aggregate (a failure of the bonding of the binder to the aggregate) or by a softening of the cohesive bonds within the asphalt binder (a failure within the binder itself), both of which are due to the action of loading under traffic in the presence of moisture. The evaluation of HMA moisture sensitivity has been divided into two categories: visual inspection test and mechanical test. However, most of them have been developed in pre-Superpave mix design. This research was undertaken to develop a protocol for evaluating the moisture sensitivity potential of HMA mixtures using the Nottingham Asphalt Tester (NAT). The mechanisms of HMA moisture sensitivity were reviewed and the test protocols using the NAT were developed. Different types of blends as moisture-sensitive groups and non-moisture-sensitive groups were used to evaluate the potential of the proposed test. The test results were analyzed with three parameters based on performance character: the retained flow number depending on critical permanent deformation failure (RFNP), the retained flow number depending on cohesion failure (RFNC), and energy ratio (ER). Analysis based on energy ratio of elastic strain (EREE ) at flow number of cohesion failure (FNC) has higher potential to evaluate the HMA moisture sensitivity than other parameters. If the measurement error in data-acquisition process is removed, analyses based on RFNP and RFNC would also have high potential to evaluate the HMA moisture sensitivity. The vacuum pressure saturation used in AASHTO T 283 and proposed test has a risk to damage specimen before the load applying.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Moisture sensitivity of Hot Mix Asphalt (HMA) mixtures, generally called stripping, is a major form of distress in asphalt concrete pavement. It is characterized by the loss of adhesive bond between the asphalt binder and the aggregate (a failure of the bonding of the binder to the aggregate) or by a softening of the cohesive bonds within the asphalt binder (a failure within the binder itself), both of which are due to the action of loading under traffic in the presence of moisture. The evaluation of HMA moisture sensitivity has been divided into two categories: visual inspection test and mechanical test. However, most of them have been developed in pre-Superpave mix design. This research was undertaken to develop a protocol for evaluating the moisture sensitivity potential of HMA mixtures using the Nottingham Asphalt Tester (NAT). The mechanisms of HMA moisture sensitivity were reviewed and the test protocols using the NAT were developed. Different types of blends as moisture-sensitive groups and non-moisture-sensitive groups were used to evaluate the potential of the proposed test. The test results were analyzed with three parameters based on performance character: the retained flow number depending on critical permanent deformation failure (RFNP), the retained flow number depending on cohesion failure (RFNC), and energy ratio (ER). Analysis based on energy ratio of elastic strain (EREE ) at flow number of cohesion failure (FNC) has higher potential to evaluate the HMA moisture sensitivity than other parameters. If the measurement error in data-acquisition process is removed, analyses based on RFNP and RFNC would also have high potential to evaluate the HMA moisture sensitivity. The vacuum pressure saturation used in AASHTO T 283 and proposed test has a risk to damage specimen before the load applying.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The implementation of warm-mix asphalt (WMA) is becoming more widespread with a growing number of contractors utilizing various WMA technologies. Early research suggests WMA may be more susceptible to moisture damage than traditional hot-mix asphalt (HMA) mixes. The objectives of this study are to test the binder and mix properties of WMA technologies for both field- and laboratory-produced mixes to determine the performance of WMA compared to traditional HMA. Field- and laboratory-produced mixes were studied. The laboratory-produced mixes compared HMA control mixes with WMA mixes that had the same mix design. The WMA technologies used for the laboratory study were Advera, Sasobit, and Evotherm. The field study tested four WMA field-produced mixes. Each of the four mixes had a corresponding control HMA mix. The WMA technologies used in the field study included: Evotherm 3G/Revix, Sasobit, and Double Barrel Green Foaming. The three main factors for this study were WMA/HMA, moisture-conditioned/not moisture-conditioned, and reheated/not reheated. Mixes were evaluated based on performance tests. Binder testing was performed to determine the rheological differences between HMA and WMA binders to determine if binder grade requirements change with the addition of WMA additives. The conclusions of this study are as follows:  Reduced mixing and compaction temperatures were achieved.  Statistical differences were found when comparing tensile strength ratio (TSR) values for both laboratory- and field-produced mixes. In the laboratory, none of the WMA additives performed as well as the HMA. For the field mixes, all TSR values passed Iowa’s minimum specification of 0.8 but, on average, WMA is lower compared to HMA TSR values.  Dynamic modulus results show that, on average, HMA will have higher dynamic modulus values. This means the HMA exhibits stiffer material properties compared to WMA; this may not necessarily mean superior performance in all cases.  Flow number results show that WMA has reduced flow number values compared to HMA. The only exception was the fourth field mix and weather delayed production of the control mix by nine days. The laboratory mixes showed that flow number values increased significantly with the addition of recycled asphalt pavement (RAP).  In the laboratory study, Advera reduced TSR values. Given that Advera is a foaming agent, the increase in moisture susceptibility is likely attributed to the release of water necessary for the improvement of the workability of the asphalt mixture.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Phase II of this study further evaluated the performance of plant-produced warm-mix asphalt (WMA) mixes by conducting additional mixture performance tests at a broader range of temperatures, adding additional pavements to the study, comparing virgin and recovered binder properties, performing pavement condition surveys, and comparing survey data with the Mechanistic Empirical Pavement Design Guide (MEPDG) forecast for pavement damage over 20 years of service life. Further objectives detailing curing behavior, quality assurance testing, and hybrid technologies were as follows: * Compare the predicted and observed field performance of existing WMA trials produced in the previous Phase I study to that of hot-mix asphalt (HMA) control sections to determine if Phase I conclusions are translating to the field; * Identify any curing effect (and timing of the effect) of WMA mixtures and binders in the field; * Determine how the field-compacted mixture properties and recovered binder properties of WMA compare to those of HMA over time for technologies common to Iowa; * Identify the protocols for WMA sample preparation for volumetric and performance testing that best simulate field conditions. The findings of this study indicate that WMA additives do show statistical differences in mixture properties in some of the mixes tested. These differences will not always be statistically different from mixture to mixture. Multiple factors, such as WMA additive type, amount of recycled asphalt material, construction conditions, and mixture variability all play a role in determining the extent of which WMA and HMA mixes differ. Other significant findings of this study include effects of curing, aging in recovered binders from HMA and WMA cores, and the influence of recycled asphalt shingles (RAS) used with WMA. These findings will be of interest to owner agencies and contractors utilizing WMA technologies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Effects of polyolefins, neoprene, styrene-butadiene-styrene (SBS) block copolymers, styrene-butadiene rubber (SBR) latex, and hydrated lime on two asphalt cements were evaluated. Physical and chemical tests were performed on a total of 16 binder blends. Asphalt concrete mixes were prepared and tested with these modified binders and two aggregates (crushed limestone and gravel), each at three asphalt content levels. Properties evaluated on the modified binders (original and thin-film oven aged) included: viscosity at 25 deg C, 60 deg C and 135 deg C with capillary tube and cone-plate viscometer, penetration at 5 deg C and 25 deg C, softening point, force ductility, and elastic recovery at 10 deg C, dropping ball test, tensile strength, and toughness and tenacity tests at 25 deg C. From these the penetration index, the viscosity-temperature susceptibility, the penetration-viscosity number, the critical low-temperature, long loading-time stiffness, and the cracking temperature were calculated. In addition, the binders were studied with x-ray diffraction, reflected fluorescence microscopy, and high-performance liquid chromatography techniques. Engineering properties evaluated on the 72 asphalt concrete mixes containing additives included: Marshall stability and flow, Marshall stiffness, voids properties, resilient modulus, indirect tensile strength, permanent deformation (creep), and effects of moisture by vacuum-saturation and Lottman treatments. Pavement sections of varied asphalt concrete thicknesses and containing different additives were compared to control mixes in terms of structural responses and pavement lives for different subgrades. Although all of the additives tested improved at least one aspect of the binder/mixture properties, no additive was found to improve all the relevant binder/mixture properties at the same time. On the basis of overall considerations, the optimum beneficial effects can be expected when the additives are used in conjunction with softer grade asphalts.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Interest in the use of ground rubber from used tires as a hot asphalt mix binder has been increasing due to the magnitude of the disposal problem posed by the annual addition of millions of waste tires to the refuse stream. This study evaluates, through laboratory means, the performance of asphalt-rubber as a hot mix binder as compared to conventional asphalt. The results indicate that asphalt-rubber outperforms its base asphalt in mixes of identical gradation and comparable void content on tests that are heavily dependent on binder characteristics (resilient modulus and indirect tension). An appreciable increase in rut resistance due to the use of asphalt-rubber is not indicated.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Efforts to eliminate rutting on the Interstate system have resulted in 3/4 in. aggregate mixes, with 75 blow Marshall, 85% crushed aggregate mix designs. On a few of these projects paved in 1988-1989, water has appeared on the surfaces. Some conclusions have been reached by visual on-sight investigations that the water is coming from surface water, rain and melting snow gaining entry into the surface asphalt mixture, then coming back out in selected areas. Cores were taken from several Interstate projects and tested for permeability to investigate the surface water theory that supposedly happens with only the 3/4 in. mixtures. All cores were of asphalt overlays over portland cement concrete, except for the Clarke County project which is full depth AC. The testing consisted of densities, permeabilities, voids by high pressure airmeter (HPAM), extraction, gradations, AC content, and film thicknesses. Resilient modulus, indirect tensile and retained strengths after freeze/thaw were also done. All of the test results are about as expected. Permeabilities, the main reason for testing, ranged from 0.00 to 2.67 ft per day and averages less than 1/2 ft per day if the following two tests are disregarded. One test on each binder course came out to 15.24 ft/day, and a surface course at 13.78 ft/day but these are not out of supposedly problem projects.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Asphalt binder is typically modified with poly type (styrene-butadiene-styrene or SBS) polymers to improve its rheological properties and performance grade. The elastic and principal component of SBS polymers is butadiene. For the last decade, butadiene prices have fluctuated and significantly increased, leading state highway agencies to search for economically viable alternatives to butadiene based materials. This project reports the recent advances in polymerization techniques that have enabled the synthesis of elastomeric, thermoplastic, block-copolymers (BCPs) comprised of styrene and soybean oil, where the “B” block in SBS polymers is replaced with polymerized triglycerides derived from soybean oil. These new breeds of biopolymers have elastomeric properties comparable to well-established butadiene-based styrenic BCPs. In this report, two types of biopolymer formulations are evaluated for their ability to modify asphalt binder. Laboratory blends of asphalt modified with the biopolymers are tested for their rheological properties and performance grade. Blends of asphalt modified with the biopolymers are compared to blends of asphalt modified with two commonly used commercial polymers. The viscoelastic properties of the blends show that biopolymers improve the performance grade of the asphalt to a similar and even greater extent as the commercial SBS polymers. Results shown in this report indicate there is an excellent potential for the future of these biopolymers as economically and environmentally favorable alternatives to their petrochemically-derived analogs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Seal coat and chip seal treatments are commonly used as an economical treatment to provide a new surface to an old asphalt roadway. To be successful, the aggregate or chips must be held in place on the roadway by the asphalt binder over a long period of time. It is common, over time, that the binder becomes aged and brittle and loses its ability to be flexible and hold the aggregate in place. Modifiers have been introduced to extend the life and adhesion characteristics of asphaltic binders.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The purpose of Research Project HR-182 was to identify those aggregate types which would perform satisfactorily as seal coat aggregates. Aggregates were chosen from across the State to represent the various types normally encountered and were used with two different types of binder bitumens. A water spray treatment was also included to simulate the effects of rainfall. The evaluation was based upon aggregate retention. Due to the influence of unexpected variables upon the field samples, the laboratory data are reliable for only the most general observations. Namely, that gravels as a group appear to be retained better than carbonates and rain-fall shortly after seal coat placement can affect aggregate retention. The subsequent field observations and analysis of skid resistance data permit the following conclusions: 1. Aggregate retention is influenced by lithologic type with the gravels, quartzite, haydite, dolomites, and medium grained limestones performing best. 2. Aggregate retention is not influenced by binder bitumen type. 3. Friction values of seal coats are influ-enced by aggregate retention and/or lithologic type. The following recommendations have been determined: The aggregate used for cover aggregate/seal coat projects should be Type 4 or better skid resistance as identified in Iowa DOT Materials Instructional Memorandum T-203. This will result in maximizing the possibility of good aggregate retention and skid resistance.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Discarded tires have become a major disposal problem in the U.S. Different techniques of recycling these discarded tires have been tried. The state of Iowa is currently evaluating the use of discarded tires ground into crumb rubber and blending it with asphalt to make asphalt rubber cement (ARC}. This was the sixth project this process has been used in. This project is located on US 169 from the east junction of IA 175 west and north to US 20. Only the binder course was placed this year with the surface course to be let at a later date. There are four test sections, two sections with conventional mixtures and two with ARC mixtures.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The purpose of this research was to evaluate the performance and the use of asphalt rubber binders and recycled rubber granules in asphalt pavement in the state of Iowa. This five year research project was initiated in June 1991 and it was incorporated into Muscatine County Construction Project US 61 from Muscatine to Blue Grass over an existing 10 in. (25.4 cm) by 24 ft (7.3 m) jointed rigid concrete pavement constructed in 1957. The research site consisted of four experimental sections (one section containing rubber chip, one section containing reacted asphalt rubber in both binder and surface, and two sections containing reacted asphalt rubber in surface) and four control sections. This report contains findings of the University of Northern Iowa research team covering selected responsibilities of the research project "Determination of the aging and changing of the conventional asphalt binder and asphalt-rubber binder". Based on the laboratory test, the inclusion of recycled crumb rubber into asphalt affects the ductility of modified binder at various temperatures.