218 resultados para Construction equipment rental
Resumo:
Highway construction is among the most dangerous industries in the US. Internal traffic control design, along with how construction equipment and vehicles interact with the traveling public, have a significant effect on how safe a highway construction work zone can be. An integrated approach was taken to research work-zone safety issues and mobility, including input from many personnel, ranging from roadway designers to construction laborers and equipment operators. The research team analyzed crash data from Iowa work-zone incident reports and Occupational Safety and Health Administration data for the industry in conjunction with the results of personal interviews, a targeted work-zone ingress and egress survey, and a work-zone pilot project.
Resumo:
The Iowa Department of Transportation is committed to improved management systems, which in turn has led to increased automation to record and manage construction data. A possible improvement to the current data management system can be found with pen-based computers. Pen-based computers coupled with user friendly software are now to the point where an individual's handwriting can be captured and converted to typed text to be used for data collection. It would appear pen-based computers are sufficiently advanced to be used by construction inspectors to record daily project data. The objective of this research was to determine: (1) if pen-based computers are durable enough to allow maintenance-free operation for field work during Iowa's construction season; and (2) if pen-based computers can be used effectively by inspectors with little computer experience. The pen-based computer's handwriting recognition was not fast or accurate enough to be successfully utilized. The IBM Thinkpad with the pen pointing device did prove useful for working in Windows' graphical environment. The pen was used for pointing, selecting and scrolling in the Windows applications because of its intuitive nature.
Resumo:
In conventional construction practices, a longitudinal joint is sawed in a PCC (Portland Cement Concrete) pavement to control concrete shrinkage cracking between two lanes of traffic. Sawing a joint in hardened concrete is an expensive and time consuming operation. The longitudinal joint is not a working joint (in comparison to a transverse joint) as it is typically tied with a tie bar at 30 inch spacing. The open joint reservoir, left by the saw blade, typically is filled or sealed with a durable crack sealant to keep incompressibles and water from getting into the joint reservoir. An experimental joint forming knife has been developed. It is installed under the paving machine to form the longitudinal joint in the wet concrete as a part of the paving process. Through this research method, forming a very narrow longitudinal joint during the paving process, two conventional paving operations can be eliminated. Joint forming eliminates the need of the joint sawing operation in the hard concrete, and as the joint that is formed does not leave a wide-open reservoir, but only a hairline crack, it does not need the joint filling or sealing operation. Therefore, the two conventional longitudinal joint sawing and sealing operations are both being eliminated by this innovation. A laboratory scale prototype joint forming knife was built and tested, initially forming joints in small concrete beams. The results were positive so the method was proposed for field testing. Initial field tests were done in the construction season of 2001, limited to one paving contractor. A number of modifications were made to the knife throughout the field tests. About 3000 feet of longitudinal joint was formed in 2001. Additional testing was done in the 2002 construction season, working with the same contractor. About 150,000 feet of longitudinal joint was formed in 2002. Evaluations of the formed joints were done to determine longitudinal joint hairline crack development rate and appearance. Additional tests will be done in the next construction season to improve or perfect the longitudinal joint forming technique.
Resumo:
The report reviews the past work in the United States and internationally in the development of two-lift pavements. It points out the strengths and limitations in the construction of such portland cement concrete pavements. Certain cost, mix design, and construction problems are inhibiting the growth of this product. Changes in the availability of aggregates, knowledge of materials and new construction equipment, and the desire for specific surfaces to meet noise, durability, and safety are prompting the need to reconsider this type of construction.
Resumo:
The report reviews the past work in the United States and internationally in the development of two-lift pavements. It points out the strengths and limitations in the construction of such portland cement concrete pavements. Certain cost, mix design, and construction problems are inhibiting the growth of this product. Changes in the availability of aggregates, knowledge of materials and new construction equipment, and the desire for specific surfaces to meet noise, durability, and safety are prompting the need to reconsider this type of construction.
Resumo:
Several primary techniques have been developed through which soil aggregate road material properties may be improved. Such techniques basically involve a mechanism of creating a continuous matrix system of soil and/or aggregate particles, interlocked through the use of some additive such as portland cement, lime, or bituminous products. Details by which soils are stabilized vary greatly, but they are dependent on the type of stabilizing agent and nature of the soil, though the overall approach to stabilization has the common feature that improvement is achieved by some mechanism(s) forcing individual particles to adhere to one another. This process creates a more rigid material, most often capable of resisting the influx of water during freezing, loss of strength due to high moisture content and particle dispersion during thawing, and loss of strength due to migration of fines and/or water by capillarity and pumping. The study reported herein, took a new and relatively different approach to strengthening of soils, i.e., improvement of roadway soils and/or soil-aggregate materials by structural reinforcement with randomly oriented fibers. The purpose of the study was to conduct a laboratory and field investigation into the potential of improving (a) soil-aggregate surfaced and subgrade materials, including those that are frost-prone and/or highly moisture susceptible, and (b) localized base course materials, by uniting such materials through fibrous reinforcement. The envisioned objective of the project was the development of a simple construction technique(s) that could be (a) applied on a selective basis to specific areas having a history of poor performance, or (b) used for improvement of potential base materials prior to surfacing. Little background information on such purpose and objective was available. Though the envisioned process had similarities to fibrous reinforced concrete, and to fibrous reinforced resin composites, the process was devoid of a cementitious binder matrix and thus highly dependent on the cohesive and frictional interlocking processes of a soil and/or aggregate with the fibrous reinforcement; a condition not unlike the introduction of reinforcing bars into a concrete sand/aggregate mixture without benefit of portland cement. Thus the study was also directed to answering some fundamental questions: (1) would the technique work; (2) what type or types of fibers are effective; (3) are workable fibers commercially available; and (4) can such fibers be effectively incorporated with conventional construction equipment, and employed in practical field applications? The approach to obtaining answers to these questions, was guided by the philosophy that an understanding of basic fundamentals was essential to developing a body of engineering knowledge, that would serve as the basis for eventual development of design procedures with fibrous products for the applications previously noted.
Resumo:
Based upon the success the Iowa Department of Transportation has had using thin bonded, low slump, dense portland cement concrete on bridge decks for rehabilitation, it was decided to pursue research in the area of bonded portland cement concrete resurfacing of pavements. Since that time, in an effort to reduce costs, research was conducted into eliminating the grouting operation. On this project a non-grouted overlay was used to modernize an existing urban street. This research project is located in the City of Oskaloosa on 11th Avenue from South M Street to South Market Street. Construction of the project went well and the non-grouted overlay has performed very well to date.
Resumo:
Seven experimental texture sections were constructed on the Polk-Jasper RP-163-1(50)--16--77 project just east of Des Moines. The experimental sections included two groove depths for a longitudinal tine texture and 13 mm (1/2 in.), 19 mm (1 in.) and variable spaced transverse tine textures. An artificial turf textured section was also included. Friction values and a rating of objectionable noise were determined for all sections. All transverse tine textures generated a high level of objectionable noise. The longitudinal tine texture was rated very good in regard to objectionable noise. At this time, all tined textures are providing satisfactory friction values.
Resumo:
In May 1950 a proposal for a research project was submitted to the newly formed Iowa Highway Research Board for consideration and action. This project, designated RPSl by the Board, encompassed the study, development, preparation of preliminary plans and specifications for the construction of a wheel track to be used in the accelerated testing of highway pavements. The device envisioned in the proposal was a circular track about seventy-five feet in diameter equipped with a suitable automobile-tired device to test pavements about five feet in width laid into the track under regular construction practices by small scale construction equipment. The Board, upon review, revised and expanded the basic concepts of the project. The project as revised by the Board included a study of the feasibility of developing, constructing and operating an accelerated testing track in which pavements, bases and subgrades may be laid one full lane, or at least ten feet, in width by full size construction equipment in conformity with usual construction practices. The pavements so laid are to be subjected, during test, to conditions as nearly simulating actual traffic as possible.
Resumo:
Asphalt pavements suffer various failures due to insufficient quality within their design lives. The American Association of State Highway and Transportation Officials (AASHTO) Mechanistic-Empirical Pavement Design Guide (MEPDG) has been proposed to improve pavement quality through quantitative performance prediction. Evaluation of the actual performance (quality) of pavements requires in situ nondestructive testing (NDT) techniques that can accurately measure the most critical, objective, and sensitive properties of pavement systems. The purpose of this study is to assess existing as well as promising new NDT technologies for quality control/quality assurance (QC/QA) of asphalt mixtures. Specifically, this study examined field measurements of density via the PaveTracker electromagnetic gage, shear-wave velocity via surface-wave testing methods, and dynamic stiffness via the Humboldt GeoGauge for five representative paving projects covering a range of mixes and traffic loads. The in situ tests were compared against laboratory measurements of core density and dynamic modulus. The in situ PaveTracker density had a low correlation with laboratory density and was not sensitive to variations in temperature or asphalt mix type. The in situ shear-wave velocity measured by surface-wave methods was most sensitive to variations in temperature and asphalt mix type. The in situ density and in situ shear-wave velocity were combined to calculate an in situ dynamic modulus, which is a performance-based quality measurement. The in situ GeoGauge stiffness measured on hot asphalt mixtures several hours after paving had a high correlation with the in situ dynamic modulus and the laboratory density, whereas the stiffness measurement of asphalt mixtures cooled with dry ice or at ambient temperature one or more days after paving had a very low correlation with the other measurements. To transform the in situ moduli from surface-wave testing into quantitative quality measurements, a QC/QA procedure was developed to first correct the in situ moduli measured at different field temperatures to the moduli at a common reference temperature based on master curves from laboratory dynamic modulus tests. The corrected in situ moduli can then be compared against the design moduli for an assessment of the actual pavement performance. A preliminary study of microelectromechanical systems- (MEMS)-based sensors for QC/QA and health monitoring of asphalt pavements was also performed.
Resumo:
Information about roadway departures, rural intersections, and rural speed management countermeasures relevant to Iowa was summarized on webpages (www.ctre.iastate.edu/research-synthesis/) to allow agencies to more effectively target specific types of crashes in Iowa. More information about each of the countermeasures described in this tech transfer summary, as well as speed impacts, reported crash modification factors, costs, usage within Iowa, and Iowa-specific guidance, is available on the Synthesis of Safety-Related Research web pages at www.ctre.iastate.edu/research-synthesis/. The project provides Iowa agencies with a resource (both web pages and relevant publications) to address rural safety. The team is coordinating with the Iowa Local Technical Assistance Program (LTAP), the Iowa Highway Research Board, the Iowa Association of Counties, and other groups to explore additional ways to distribute the information to local and county agencies.
Resumo:
Lane departure crashes are the single largest category of fatal and major injury crashes in Iowa. The Iowa Department of Transportation (DOT) estimates that 60 percent of roadway-related fatal crashes are lane departures and that 39 percent of Iowa’s fatal crashes are single-vehicle run-off-road (SVROR) crashes. Addressing roadway departure was identified as one of the top eight program strategies for the Iowa DOT in their Comprehensive Highway Safety Plan (CHSP). The goal is to reduce lane departure crashes and their consequences through lane departure-related design standards and policies including paved shoulders, centerline and shoulder rumble strips, pavement markings, signs, and median barriers. Lane-Departure Safety Countermeasures: Strategic Action Plan for the Iowa Department of Transportation outlines roadway countermeasures that can be used to address lane departure crashes. This guidance report was prepared by the Institute for Transportation (InTrans) at Iowa State University for the Iowa DOT. The content reflects input from and multiple reviews by both a technical advisory committee and other knowledgeable individuals with the Iowa DOT.
Resumo:
Roughly 242 million used tires are generated annually in the United States. Many of these tires end up being landfilled or stockpiled. The stockpiles are unsightly, unsanitary, and also collect water which creates the perfect breeding ground for mosquitoes, some of which carry disease. In an effort to reduce the number of used tire stockpiles the federal government mandated the use of recycled rubber in federally funded, state implemented department of transportation (DOT) projects. This mandate required the use of recycled rubber in 5% of the asphalt cement concrete (ACC) tonnage used in federally funded projects in 1994, increasing that amount by 5% each year until 20% was reached, and remaining at 20% thereafter. The mandate was removed as part of the appropriations process in 1994, after the projects in this research had been completed. This report covers five separate projects that were constructed by the Iowa Department Of Transportation (DOT) in 1991 and 1992. These projects had all had some form of rubber incorporated into their construction and were evaluated for 5 years. The conclusion of the study is that the pavements with tire rubber added performed essentially the same as conventional ACC pavement. An exception was the use of rubber chips in a surface lift. This performed better at crack control and worse with friction values than conventional ACC. The cost of the pavement with rubber additive was significantly higher. As a result, the benefits do not outweigh the costs of using this recycled rubber process in pavements in Iowa.
Resumo:
In 1992, the Iowa DOT installed 6200 snowplowable Raised Pavement Markers (RPM) in six areas around the state. They were evaluated at six-month intervals until the replacement of the reflective lenses in 1995. During this time, the RPM performed well. The Iowa Department of Transportation uses de-icers and sand during the winter to control snow and ice on the pavement. The sand and the chemicals reduced the reflectivity of the reflectors. With minimum or no maintenance the visibility of the RPM is low. Although the RPM appear to present a problem during snow plowing, they are an excellent device for lane delineation at night in adverse weather.
Resumo:
Based on results of an evaluation performed during the winter of 1985-86, six Troxler 3241-B Asphalt Content Gauges were purchased for District use in monitoring project asphalt contents. Use of these gauges will help reduce the need for chemical based extractions. Effective use of the gauges depends on the accurate preparation and transfer of project mix calibrations from the Central Lab to the Districts. The objective of this project was to evaluate the precision and accuracy of a gauge in determining asphalt contents and to develop a mix calibration transfer procedure for implementation during the 1987 construction. The first part of the study was accomplished by preparing mix calibrations in the Central Lab gauge and taking multiple measurements of a sample with known asphalt content. The second part was accomplished by preparing transfer pans, obtaining count data on the pans using each gauge, and transferring calibrations from one gauge to another through the use of calibration transfer equations. The transferred calibrations were tested by measuring samples with a known asphalt content. The study established that the Troxler 3241-B Asphalt Content Gauge yields results of acceptable accuracy and precision as evidenced by a standard deviation of 0.04% asphalt content on multiple measurements of the same sample. The calibration transfer procedure proved feasible and resulted in the calibration transfer portion of Materials I.M. 335 - Method of Test For Determining the Asphalt Content of Bituminous Mixtures by the Nuclear Method.