16 resultados para Charles III, of Durazzo, 1345-1386.


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The number of Hispanic workers in the U.S. construction industry has been steadily increasing, and language and cultural barriers have sometimes arisen on the jobsite. Due in part to these barriers, the number of fatalities among Hispanics at construction sites in 2001 jumped 24%, while construction fatalities overall dropped 3%. This study, which constitutes Phase III of the Hispanic Workforce Research Project, addresses these language and cultural barriers by investigating the most effective way to deliver training material developed in Phases I and II to Hispanic workers, American supervisors, and department of transportation (DOT) inspectors. The research methodology consisted of assessing the needs and interests of potential and current course participants in terms of exploring innovative ways to deliver the training. The training courses were then adapted and delivered to fit the specific needs of each audience. During Phase III of this project, the research team delivered the courses described in the Phase I and II reports to eight highway construction companies and two DOT groups. The courses developed in Phases I and II consist of four construction-focused language training courses that can be part of an effective training program to facilitate integration among U.S. and Hispanic workers, increase productivity and motivation at the jobsite, and decrease the existing high mortality rate for Hispanic workers. Moreover, the research team developed a course for the construction season called Toolbox Integration Course for Hispanic workers and American supervisors (TICHA), which consists of nine 45-minute modules delivered to one construction company over 11 weeks in the summer of 2005.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Soil slope instability concerning highway infrastructure is an ongoing problem in Iowa, as slope failures endanger public safety and continue to result in costly repair work. Volume I of this current study summarizes research methods and findings, while Volume II provides procedural details for incorporating into practice an infrequently-used testing technique–borehole shear tests. Volume III of this study of field investigation of fifteen slopes in Iowa demonstrates through further experimental testing how lateral forces develop along stabilizing piles to resist slope movements. Results establish the feasibility of an alternative stabilization approach utilizing small-diameter pile elements. Also, a step-by-step procedure that can be used by both state and county transportation agencies to design slope reinforcement using slender piles is documented. Initial evidence of the efficiency and cost-effectiveness of stabilizing nuisance slope failures with grouted micropiles is presented. Employment of the remediation alternative is deemed more appropriate for stabilizing shallow slope failures. Overall, work accomplished in this research study included completing a comprehensive literature review on the state of the knowledge of slope stability and slope stabilization, the preparation and performance of fourteen full-scale pile load tests, the analysis of load test results, and the documentation of a design methodology for implementing the technology into current practices of slope stabilization. Recommendations for further research include monitoring pilot studies of slope reinforcement with grouted micropiles, supplementary experimental studies, and advanced numerical studies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

With an annual pavement marking program of approximately $2 million and another $750 thousand invested in maintenance of durable markings each year, the Iowa DOT is seeking every opportunity to provide all-year markings staying in acceptable condition under all weather conditions. The goal of this study is to analyze existing pavement marking practices and to develop a prototype Pavement Marking Management System (PMMS). This report documents the first two phases of a three-phase research project. Phase I includes an overview of the Iowa DOT’s existing practices and a literature review regarding pavement marking practices in other states. Based on this information, a work plan was developed for Phases II and III of this study. Phase II organized the key components necessary to develop a prototype PMMS for the Iowa DOT. The two primary components are (1) performance/life cycle curves for pavement marking products, and (2) an application matrix tailored to the pavement marking products and roadway and environmental conditions faced by the Iowa DOT. Both components will continue to be refined and tailored to Iowa materials and conditions as more performance data becomes available.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

What is Iowa in Motion? The Iowa Department of Transportation is continuing the journey to develop Iowa’s future transportation system. This ongoing planning process, known as Iowa in Motion, was developed in response to the Intermodal Surface Transportation Efficiency Act (ISTEA) and Iowa’s changing transportation needs. The completion of Parts I, II and III of Iowa in Motion has led to development of this State Transportation Plan. Part IV includes activities, both current and future, to support the plan. This State Transportation Plan represents the thoughts and concerns of thousands of Iowans. Individuals, metropolitan planning organizations (MPOs), regional planning affiliations (RPAs), associations and organizations have become involved and have made recommendations concerning which direction should be followed regarding transportation investments. This plan represents their extensive input into the Iowa in Motion process and consensus building as we moved towards adoption of this State Transportation Plan. The adopted plan serves as a guide for development of transportation policies, goals, objectives, initiatives and investment decisions through the year 2020.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This report documents Phase III of a four-phase project. The goals of the project are to study the feasibility of using advanced technology from other industries to improve he efficiency and safety of winter highway maintenance vehicle operations, and to provide travelers with the level of service defined by policy during the winter season at the least cost to the taxpayers. The results of the first phase of the research were documented in the Concept Highway Maintenance Vehicle Final Report: Phase One dated April 1997, which describes the desirable functions of a concept maintenance vehicle and evaluates its feasibility. Phase I concluded by establishing the technologies that would be assembled and tested on the prototype vehicles in Phase II. The primary goals of phase II were to install the selected technologies on the prototype winter maintenance vehicles and to conduct proof of concept in advance of field evaluations planned for Phase III. This Phase III final report documents the work completed since the end of Phase II. During this time period, the Phase III work plan was completed and the redesigned friction meter was field tested. A vendor meeting was held to discuss future private sector participation and the new design for the Iowa vehicle. In addition, weather and roadway condition data were collected from the roadway weather information systems at selected sites in Iowa and Minnesota, for comparison to the vehicles' onboard temperature sensors. Furthermore, the team received new technology, such as the mobile Frensor unit, for bench testing and later installation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Access management involves balancing the dual roles that roadways must play - through travel and access to property and economic activity. When these roles are not in proper balance, the result is a roadway system that functions sub-optimally. Arterial routes that have a too high driveway density and provide overly extensive access to property have high crash rates and begin to suffer in terms of traffic operations. Such routes become congested, delays increase, and mean travel speeds decline. The Iowa access management research and awareness project has had four distinct phases. Phase I involved a detailed review of the extensive national access management literature so lessons learned elsewhere could be applied in Iowa. In Phase II original case study research was conducted in Iowa. Phase III of the project concentrated on outreach and education about access management. Phase IV of the Iowa access management project extended the work conducted during Phases II and III. The main work products for Phase IV were as follows: 1) three additional before and after case studies, illustrating the impacts of various access management treatments on traffic safety, traffic operations, and business vitality; 2) an access management handbook aimed primarily at local governments in Iowa; 3) a modular access management toolkit with brief descriptions of various access management treatments and considerations; and 4) an extensive outreach plan aimed at getting the results of Phases I through IV of the project out to diverse audiences in Iowa and elsewhere.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In recent years, thin whitetopping has evolved as a viable rehabilitation technique for deteriorated asphalt cement concrete (ACC) pavements. Numerous projects have been constructed and tested, allowing researchers to identify the important elements contributing to the projects’ successes. These elements include surface preparation, overlay thickness, synthetic fiber reinforcement usage, joint spacing, and joint sealing. Although the main factors affecting thin whitetopping performance have been identified by previous research, questions still existed as to the optimum design incorporating these variables. The objective of this research is to investigate the interaction between these variables over time. Laboratory testing and field testing were conducted to achieve the research objectives. Laboratory testing involved shear testing of the bond between the portland cement concrete (PCC) overlay and the ACC surface. Field testing involved falling weight deflectometer deflection responses, measurement of joint faulting and joint opening, and visual distress surveys on the 9.6-mile project. The project was located on Iowa Highway 13 extending north from the city of Manchester, Iowa, to Iowa Highway 3 in Delaware County. Variables investigated include ACC surface preparation, PCC thickness, slab size, synthetic fiber reinforcement usage, and joint spacing. This report documents the planning, construction, and performance of each variable in the time period from summer 2002 through spring 2006. The project has performed well with only minor distress identification since its construction.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Reaudit report on the City of St. Charles, Iowa for the period July 1, 2005 through June 30, 2006

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Audit report on the City of St. Charles, Iowa for the year ended June 30, 2010

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this issue, we take a closer look at the individual risk factors measured by the LSI-R. There are several risk factors that the LSI-R assessment tool measures: Criminal History; Education/Employment; Financial; Family/Marital; Accommodations (Living Situation); Leisure/Recreation; Companions; Alcohol/Drug Problem; Emotional/Personal; and Attitudes/Orientation.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Currently, no standard mix design procedure is available for CIR-emulsion in Iowa. The CIR-foam mix design process developed during the previous phase is applied for CIR-emulsion mixtures with varying emulsified asphalt contents. Dynamic modulus test, dynamic creep test, static creep test and raveling test were conducted to evaluate the short- and long-term performance of CIR-emulsion mixtures at various testing temperatures and loading conditions. A potential benefit of this research is a better understanding of CIR-emulsion material properties in comparison with those of CIR-foam material that would allow for the selection of the most appropriate CIR technology and the type and amount of the optimum stabilization material. Dynamic modulus, flow number and flow time of CIR-emulsion mixtures using CSS-h were generally higher than those of HFMS-2p. Flow number and flow time of CIR-emulsion using RAP materials from Story County was higher than those from Clayton County. Flow number and flow time of CIR-emulsion with 0.5% emulsified asphalt was higher than CIR-emulsion with 1.0% or 1.5%. Raveling loss of CIR-emulsion with 1.5% emulsified was significantly less than those with 0.5% and 1.0%. Test results in terms of dynamic modulus, flow number, flow time and raveling loss of CIR-foam mixtures are generally better than those of CIR-emulsion mixtures. Given the limited RAP sources used for this study, it is recommended that the CIR-emulsion mix design procedure should be validated against several RAP sources and emulsion types.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Audit report on the City of St. Charles, Iowa for the year ended June 30, 2012

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Since the turn of the century, tributaries to the Missouri River in western Iowa have entrenched their channels to as much as six times their original depth. This channel degradation is accompanied by widening as the channel side slopes become unstable and landslides occur. The deepening and widening of these streams have endangered about 25% of the highway bridges in 13 counties [Lohnes et al. 1980]. Grade stabilization structures have been recommended as the most effective remedial measure for stream degradation [Brice et al., 1978]. In western Iowa, within the last seven years, reinforced concrete grade stabilization structures have cost between $300,000 and $1,200,000. Recognizing that the high cost of these structures may be prohibitive in many situations, the Iowa Department of Transportation (Iowa DOT) sponsored a study at Iowa State University (ISU) to find low-cost alternative structures. This was Phase I of the stream degradation study. Analytical and laboratory work led to the conclusion that alternative construction materials such as gabions and soil-cement might result in more economical structures [Lohnes et al. 1980]. The ISU study also recommended that six experimental structures be built and their performance evaluated. Phase II involved the design of the demonstration structures, and Phase III included monitoring and evaluating their performance.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The Federal Highway Administration (FHWA) mandated utilizing the Load and Resistance Factor Design (LRFD) approach for all new bridges initiated in the United States after October 1, 2007. As a result, there has been a progressive move among state Departments of Transportation (DOTs) toward an increased use of the LRFD in geotechnical design practices. For the above reasons, the Iowa Highway Research Board (IHRB) sponsored three research projects: TR-573, TR-583 and TR-584. The research information is summarized in the project web site (http://srg.cce.iastate.edu/lrfd/). Two reports of total four volumes have been published. Report volume I by Roling et al. (2010) described the development of a user-friendly and electronic database (PILOT). Report volume II by Ng et al. (2011) summarized the 10 full-scale field tests conducted throughout Iowa and data analyses. This report presents the development of regionally calibrated LRFD resistance factors for bridge pile foundations in Iowa based on reliability theory, focusing on the strength limit states and incorporating the construction control aspects and soil setup into the design process. The calibration framework was selected to follow the guidelines provided by the American Association of State Highway and Transportation Officials (AASHTO), taking into consideration the current local practices. The resistance factors were developed for general and in-house static analysis methods used for the design of pile foundations as well as for dynamic analysis methods and dynamic formulas used for construction control. The following notable benefits to the bridge foundation design were attained in this project: 1) comprehensive design tables and charts were developed to facilitate the implementation of the LRFD approach, ensuring uniform reliability and consistency in the design and construction processes of bridge pile foundations; 2) the results showed a substantial gain in the factored capacity compared to the 2008 AASHTO-LRFD recommendations; and 3) contribution to the existing knowledge, thereby advancing the foundation design and construction practices in Iowa and the nation.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The objective of the Phase 3 project was to re-write the identified sections of the SUDAS specifications into the imperative mood, consistent with the format utilized during the Phase 2 project and other work completed by SUDAS staff. Figures for the identified sections were updated to match the new SUDAS format, similar to the Iowa DOT Standard Road Plans. While the Iowa DOT does not intend to incorporate all of the following sections into their specification book, consistency with the Iowa DOT specifications was strived for wherever possible. Maintaining consistency between the specifications simplifies design, bidding, and construction.