3 resultados para winged tree, floral elements
Resumo:
Tree nuts, peanuts and seeds are nutrient dense foods whose intake has been shown to be associated with reduced risk of some chronic diseases. They are regularly consumed in European diets either as whole, in spreads or from hidden sources (e.g. commercial products). However, little is known about their intake profiles or differences in consumption between European countries or geographic regions. The objective of this study was to analyse the population mean intake and average portion sizes in subjects reporting intake of nuts and seeds consumed as whole, derived from hidden sources or from spreads. Data was obtained from standardised 24-hour dietary recalls collected from 36 994 subjects in 10 different countries that are part of the European Prospective Investigation into Cancer and Nutrition (EPIC). Overall, for nuts and seeds consumed as whole, the percentage of subjects reporting intake on the day of the recall was: tree nuts = 4. 4%, peanuts = 2.3 % and seeds = 1.3 %. The data show a clear northern (Sweden: mean intake = 0.15 g/d, average portion size = 15.1 g/d) to southern (Spain: mean intake = 2.99 g/d, average portion size = 34.7 g/d) European gradient of whole tree nut intake. The three most popular tree nuts were walnuts, almonds and hazelnuts, respectively. In general, tree nuts were more widely consumed than peanuts or seeds. In subjects reporting intake, men consumed a significantly higher average portion size of tree nuts (28.5 v. 23.1 g/d, P<0.01) and peanuts (46.1 v. 35.1 g/d, P<0.01) per day than women. These data may be useful in devising research initiatives and health policy strategies based on the intake of this food group.
Resumo:
The aims of this study were to check whether different biomarkers of inflammatory, apoptotic, immunological or lipid pathways had altered their expression in the occluded popliteal artery (OPA) compared with the internal mammary artery (IMA) and femoral vein (FV) and to examine whether glycemic control influenced the expression of these genes. The study included 20 patients with advanced atherosclerosis and type 2 diabetes mellitus, 15 of whom had peripheral arterial occlusive disease (PAOD), from whom samples of OPA and FV were collected. PAOD patients were classified based on their HbA1c as well (HbA1c ≤ 6.5) or poorly (HbA1c > 6.5) controlled patients. Controls for arteries without atherosclerosis comprised 5 IMA from patients with ischemic cardiomyopathy (ICM). mRNA, protein expression and histological studies were analyzed in IMA, OPA and FV. After analyzing 46 genes, OPA showed higher expression levels than IMA or FV for genes involved in thrombosis (F3), apoptosis (MMP2, MMP9, TIMP1 and TIM3), lipid metabolism (LRP1 and NDUFA), immune response (TLR2) and monocytes adhesion (CD83). Remarkably, MMP-9 expression was lower in OPA from well-controlled patients. In FV from diabetic patients with HbA1c ≤6.5, gene expression levels of BCL2, CDKN1A, COX2, NDUFA and SREBP2 were higher than in FV from those with HbA1c >6.5. The atherosclerotic process in OPA from diabetic patients was associated with high expression levels of inflammatory, lipid metabolism and apoptotic biomarkers. The degree of glycemic control was associated with gene expression markers of apoptosis, lipid metabolism and antioxidants in FV. However, the effect of glycemic control on pro-atherosclerotic gene expression was very low in arteries with established atherosclerosis.
Resumo:
A workshop was convened to discuss best practices for the assessment of drug-induced liver injury (DILI) in clinical trials. In a breakout session, workshop attendees discussed necessary data elements and standards for the accurate measurement of DILI risk associated with new therapeutic agents in clinical trials. There was agreement that in order to achieve this goal the systematic acquisition of protocol-specified clinical measures and lab specimens from all study subjects is crucial. In addition, standard DILI terms that address the diverse clinical and pathologic signatures of DILI were considered essential. There was a strong consensus that clinical and lab analyses necessary for the evaluation of cases of acute liver injury should be consistent with the US Food and Drug Administration (FDA) guidance on pre-marketing risk assessment of DILI in clinical trials issued in 2009. A recommendation that liver injury case review and management be guided by clinicians with hepatologic expertise was made. Of note, there was agreement that emerging DILI signals should prompt the systematic collection of candidate pharmacogenomic, proteomic and/or metabonomic biomarkers from all study subjects. The use of emerging standardized clinical terminology, CRFs and graphic tools for data review to enable harmonization across clinical trials was strongly encouraged. Many of the recommendations made in the breakout session are in alignment with those made in the other parallel sessions on methodology to assess clinical liver safety data, causality assessment for suspected DILI, and liver safety assessment in special populations (hepatitis B, C, and oncology trials). Nonetheless, a few outstanding issues remain for future consideration.