5 resultados para vectores no virales
Resumo:
Toscana virus (TOSV, Phlebovirus, family Bunyaviridae) infection is one of the most prevalent arboviruses in Spain. Within the objectives of a multidisciplinary network, a study on the epidemiology of TOSV was conducted in Granada, in southern Spain. The overall seroprevalence rate was 24.9%, significantly increasing with age. TOSV was detected in 3 of 103 sandfly pools by viral culture or reverse transcription-polymerase chain reaction from a region of the L gene. Nucleotide sequence homology was 99%-100% in TOSV from vectors and patients and 80%-81% compared to the Italian strain ISS Phl.3. Sequencing of the N gene of TOSV isolates from patients and vectors indicated 87%-88% and 100% homology at the nucleotide and amino acid levels, respectively, compared to the Italian strain. These findings demonstrate the circulation of at least 2 different lineages of TOSV in the Mediterranean basin, the Italian lineage and the Spanish lineage.
Resumo:
Distribution of Toscana virus (TOSV) is evolving with climate change, and pathogenicity may be higher in nonexposed populations outside areas of current prevalence (Mediterranean Basin). To characterize genetic diversity of TOSV, we determined the coding sequences of isolates from Spain and France. TOSV is more diverse than other well-studied phleboviruses (e.g.,Rift Valley fever virus).
Resumo:
Boletín semanal para profesionales sanitarios de la Secretaría General de Calidad, Innovación y Salud Pública de la Consejería de Igualdad, Salud y Políticas Sociales
Resumo:
A new member of the phlebovirus genus, tentatively named Granada virus, was detected in sandflies collected in Spain. By showing the presence of specific neutralizing antibodies in human serum collected in Granada, we show that Granada virus infects humans. The analysis of the complete genome of Granada virus revealed that this agent is likely to be a natural reassortant of the recently described Massilia virus (donor of the long and short segments) with ayet unidentified phlebovirus (donor of the medium segment)
Resumo:
A new oligochromatographic assay, Speed-Oligo Novel Influenza A H1N1, was designed and optimized for the specific detection of the 2009 influenza A H1N1 virus. The assay is based on a PCR method coupled to detection of PCR products by means of a dipstick device. The target sequence is a 103-bp fragment within the hemagglutinin gene. The analytical sensitivity of the new assay was measured with serial dilutions of a plasmid that contained the target sequence, and we determined that down to one copy per reaction of the plasmid was reliably detected. Diagnostic performance was assessed with 103 RNAs from suspected cases (40 positive and 63 negative results) previously analyzed with a reference real-time PCR technique. All positive cases were confirmed, and no false-positive results were detected with the new assay. No cross-reactions were observed when other viral strains or clinical samples with other respiratory viruses were tested. According to these results, this new assay has 100% sensitivity and specificity. The turnaround time for the whole procedure was 140 min. The assay may be especially useful for the specific detection of 2009 H1N1 virus in laboratories not equipped with real-time PCR instruments